
 

 

A Publication 
of Reliable Methods 
for the Preparation 

of Organic Compounds 

 
 
 

Working with Hazardous Chemicals 
 

The procedures in Organic Syntheses are intended for use only by persons with proper 
training in experimental organic chemistry.  All hazardous materials should be handled 
using the standard procedures for work with chemicals described in references such as 
"Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 
2011; the full text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste should be 
disposed of in accordance with local regulations.  For general guidelines for the 
management of chemical waste, see Chapter 8 of Prudent Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red 
“Caution Notes” within a procedure.  It is important to recognize that the absence of a 
caution note does not imply that no significant hazards are associated with the chemicals 
involved in that procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards associated with each 
chemical and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards associated 
with chemicals can be found in Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as published and are 
conducted at one's own risk.  Organic Syntheses, Inc., its Editors, and its Board of 
Directors do not warrant or guarantee the safety of individuals using these procedures and 
hereby disclaim any liability for any injuries or damages claimed to have resulted from or 
related in any way to the procedures herein. 

 

These paragraphs were added in September 2014.  The statements above do not supersede any specific 
hazard caution notes and safety instructions included in the procedure. 
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Homoconjugate Addition of Nucleophiles to Cyclopropane-1,1-

Dicarboxylate Derivatives: 2-Oxo-1-Phenyl-3-

Pyrrolidinecarboxylic Acid 

[3-Pyrrolidinecarboxylic acid, 2-oxo-1-phenyl-] 
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1. Procedure 

 

A.  Preparation of cyclopropane 1,l-dicarboxylic acid (1). To a 1-L 

solution of aqueous 50% sodium hydroxide (Note 1), mechanically stirred in 

a 2-L, three-necked flask, is added, at 25 °C, 114.0 g (0.5 mol) of 

triethylbenzylammonium chloride (Note 2). To this vigorously stirred 

suspension is added a mixture of 80.0 g (0.5 mol) of diethyl malonate and 

141.0 g (0.75 mol) of 1,2-dibromoethane all at once. The reaction mixture is 

vigorously stirred for 2 h (Note 3). The contents of the flask are transferred 

to a 4-L Erlenmeyer flask by rinsing the flask with three 75-mL portions of 

water. The mixture is magnetically stirred and cooled with an ice bath to 

15 °C, and then carefully acidified by dropwise addition of 1 L of 

concentrated hydrochloric acid. The temperature of the flask is maintained 

between 15 and 25 °C during acidification. The aqueous layer is poured into 

a 4-L separatory funnel and extracted three times with 900 mL of ether. The 
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aqueous layer is saturated with sodium chloride and extracted three times 

with 500 mL of ether. The ether layers are combined, washed with 1 L of 

brine, dried (MgSO4), and decolorized with activated carbon. Removal of 

the solvent by rotary evaporation gave 55.2 g of a semisolid residue. The 

residue is triturated with 100 mL of benzene. Filtration of this mixture gave 

43.1–47.9 g (66–73%) of 1 as white crystals, mp 137–140 °C. 

B. 6,6-Dimethyl-5,7-dioxaspiro[2.5]octane-4,8-dione (2). A 

suspension of 39.0 g (0.30 mol) of 1 and 33.0 g (0.33 mol) of freshly 

distilled isopropenyl acetate is stirred vigorously (magnetic stirrer). To this 

suspension is added dropwise over a period of 30 min, 0.5 mL of 

concentrated sulfuric acid. While being stirred for an additional 30 min, the 

solution became clear yellow, and then partly solidified after being kept at 

5 °C for 24 h. After addition of 50 mL of cold water, the precipitated solid is 

filtered, washed with 10 mL of cold water, and air-dried to give 30.9 g of 

crude spiroacylal 2. The filtrate is extracted three times with 50-mL portions 

of ether. The combined organic layers are carefully washed with 50 mL of 

brine, dried (MgSO4), and decolorized with activated carbon. Evaporation of 

the solvent gave an additional 7.8 g of spiroacylal 2 as a yellow solid. The 

combined samples of crude spiroacylal (38.7 g) are recrystallized (Note 4) 

from 110 mL of hexane and 25 mL of benzene to give 28.7–31.5 g (55–

61%) of 2 (Note 5) as colorless needles, mp 65–67 °C. Concentration of the 

above mother liquor to ca. 40 mL gave 0.80 g of a second crop of spiroacylal 

2 as slightly yellow crystals, mp 58–60 °C. 

C. 2-Oxo-1-phenyl-3-pyrrolidinecarboxylic acid (3) (Note 6). A 100-

mL, round-bottomed flask equipped with an egg-shaped Teflon-coated 

magnetic stir bar (3 x 1 cm), rubber septum, and argon inlet needle is 

charged with spiroacylal 2 (5.10 g, 30 mmol, 1.0 equiv).  Aniline (8.2 mL, 

8.4 g, 90 mmol, 3.0 equiv) (Note 7) is added rapidly via syringe and the 

spiroacylal dissolved within 15 min to produce a pale yellow solution.  The 

reaction mixture is stirred at room temperature for 13 h and the resulting 

orange solution (Note 8) is diluted with 150 mL of chloroform, washed with 

three 10-mL portions of 10% hydrochloric acid solution and 20 mL of brine, 

dried over 5 g of MgSO4, and filtered. The filtrate is decolorized by stirring 

for 5 min over 0.5 g of activated carbon which is then separated by suction 

filtration through 1-inch of Celite in a Büchner funnel with the aid of 30 mL 

of chloroform.  Concentration by rotary evaporation (25 °C, 20 torr) 

afforded 6.18 g of a light brown solid. This material is dissolved completely 

in 52 mL of chloroform (60 °C) and then hexanes (15 mL) are slowly added 
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until the solution became turbid. Hot chloroform (3 mL) is added until the 

solution became clear and then the solution is allowed to cool slowly to 0 °C 

over 2 h during which time white crystals began to form. The flask is capped 

and allowed to stand in a freezer at –25 °C for 16 h. The resulting crystals 

are collected by suction filtration on a Büchner funnel, washed with 20 mL 

of ice-cold hexanes, and transferred to a 50-mL, round-bottomed flask and 

dried overnight at 0.05 mmHg to provide 4.06 g pyrrolidinone 3 as a white 

solid. The filtrate is concentrated to a brown solid, dissolved in 8 mL of hot 

chloroform (60 °C), and then 3 mL of hexanes are added until the solution 

became turbid. An additional 4 drops of chloroform is added until the 

solution became clear and the hot solution is allowed to cool to rt over 2 h at 

which time a seed crystal is added. The flask is cooled at 0 °C for 1 h and 

then -25 °C for an additional 14 h.  The resulting crystals are collected by 

suction filtration on a Büchner funnel, washed with 10 mL of ice-cold 

hexanes, and transferred to a 50-mL, round-bottomed flask and dried 

overnight at 0.05 mmHg to provide 0.933 g of 3 as a white solid. The two 

crops are combined to afford 4.99 g (81%) of 3 as a white solid. 

 

2. Notes 

 

1. Aqueous 50% sodium hydroxide was prepared by dissolving 500 g of 

sodium hydroxide pellets in water and diluting to 1 L. 

2. This compound is commercially available from Aldrich Chemical 

Company, Inc. Alternatively, it can be made very cheaply and simply by 

mixing benzyl chloride (1 equiv) with triethylamine (2.5 equiv). The mixture 

is allowed to stand for 4–7 days at room temperature. Filtration of the solid 

and drying in vacuum give triethylbenzylammonium chloride suitable for 

use in nearly quantitative yield. 

3. Some exothermicity results on mixing, causing the temperature to 

rise to ca. 65 °C. 

4. The second checkers recrystallized the crude product from benzene-

hexanes at 45 °C according to the following procedure. The crude product 

(15.7 g) was taken up in 0.3 mL of water and 10 ml of benzene at 45 °C.  

Hexanes (8 mL) were then added slowly until the solution became cloudy. 

An addition 4 mL of benzene was then added dropwise at 45 °C until the 

solution became clear. The solution was allowed to cool and let stand at 15 

°C for 3 h.  The resulting colorless crystals were filtered on a Buchner 

funnel washing with ca. 14 mL of cold hexanes. The hexane-benzene filtrate 
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was concentrated to provide a mother liquor for further crystallization. The 

crystals collected by the filtration were found to be contaminated with 

unreacted cyclopropane-1,1-dicarboxylic acid, which was removed by 

washing with 100 mL of ice-cold water, leaving 6.40 g of pure 2. The filtrate 

was extracted with three 30-mL portions of Et2O, concentrated, and then 

washed further with 40-mL of ice-cold water to afford an additional 1.12 g 

of 2. A second crop of product (2.33 g) was obtained by applying a similar 

procedure to the mother liquor. Total yield: 9.85 g (56%) of 2.  Due to 

volatility, the product should be air-dried and not exposed to high vacuum. 

5. Analytical data for 2: mp = 64-65 °C;
 1
H NMR (500 MHz, CDCl3)  

2.00 (s, 4 H), 1.82 (s, 6 H); 
13

C NMR (125 MHz, CDCl3)  168.4, 105.4, 

27.8, 24.4, 24.1; IR (KBr) 3484, 3113, 3018, 2938, 1739, 1362, 1042, 970, 

727, 621, and 491 cm
-1

; Anal. calcd for C8H10O4: C, 56.47; H, 5.92; found: 

C, 56.38; H, 5.74. 

6. The originally published procedure for Step C contained several 

errors with regard to the amounts of reactants.  This procedure was 

rechecked and a revised procedure was published in August, 2012. 

7. Aniline 99+% was purchased from Alfa Aesar and used as received. 

8. The authors report that they obtained a crystalline mass after stirring 

overnight. 

9. Analytical data for 3: mp = 144 -145 °C (dec); 
1
H NMR (500 MHz, 

CDCl3)  11.20 (br s, 1 H) 7.58 (app d, J = 7.5 Hz, 2 H), 7.43 (app t, J = 7.5 

Hz, 2 H), 7.26 (t, J = 7.5 Hz, 1 H), 3.89-3.99 (m, 2 H), 3.67 (t, J = 10.5 Hz, 2 

H), 2.47-2.64 (m, 2 H); 
13

C NMR (125 MHz, CDCl3)  171.5, 169.6, 138.1, 

129.4, 126.4, 120.8, 47.8, 47.3, 21.1; IR (KBr) 3233, 2939, 2585, 1724, 

1679, 1401, 1167, 753, and 660 cm
-1

. The authors report that at the melting 

point, after a few minutes, the lactam acid 3 suffers smooth decarboxylation 

to afford N-phenyl-2-pyrrolidinone. Alternatively, the acid can be esterified 

(methanol-hydrochloric acid), and the resulting 1-phenyl-3-

carbomethoxypyrrolidin-2-one can be used for the introduction of other 

functionality at the 3-position. 

 

3. Discussion 

 

Previously cyclopropane-1,1-dicarboxylic acid had been prepared
2,3,4 

by hydrolysis of the corresponding diester. The preparation of 1,1-

dicarboalkoxycyclopropanes by a conventional double alkylation of diethyl 

malonate with 1,2-dibromoethane was severely complicated by the recovery 
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of unreacted diethylmalonate. This required a rather difficult distillation to 

separate starting material and product. In fact, many commercially offered 

lots of cyclopropane diester contain extensive amounts of diethyl malonate. 

Furthermore, preparation of the diacid required a separate and relatively 

slow saponification of the diester.
5
 

The procedure described here for compound 1 is a scale-up of a 

published method.
6
 Phase-transfer catalysis

7
 and concentrated alkali are used 

to effect a one-pot conversion of diethyl malonate to the cyclopropane diacid, 

which is easily obtained by crystallization. Apparently alkylation of the 

malonate system occurs either at the diester or monocarboxylate, monoester 

stage since the method fails when malonic acid itself is used as the starting 

material. This method of synthesizing doubly activated cyclopropanes has 

been extended to the preparation of 1-cyanocyclopropanecarboxylic acid 

(86%) by the use of ethyl cyanoacetate and 1-acetylcyclopropanecarboxylic 

acid (69%) by use of ethyl acetoacetate.
6
 

The spiroacylal 2 is potentially a valuable agent in organic synthesis.
8
 

It is readily attacked by a variety of nucleophiles, including pyridine, to give 

ring-opened products bearing a stabilized carbanion. It is thus seen to be a 

synthetic equivalent of CH2-CH2-CH(CO2H)2 and  CH2(CH2)2-CO2H, i.e., a  

O

O
O

O
2

Y:(m)

O

O
O

O
Y(n+1)

 
homo-Michael acceptor. The general reaction is where Y = aniline, 

piperidine, pyridine, mercaptide, enolate, etc. Spiroacylal 2 was designed 

under the rationale that the constraint of the carbonyl groups into a 

conformation in which overlap of their -orbitals with the "bent bonds" of 

the cyclopropane is assured should dramatically increase the vulnerability of 

the cyclopropane toward nucleophilic attack.
8
 Experimental support for this 

notion is abundant.
8
 Spiroacylal 2 is considerably more reactive than 1,1-

dicarbethoxycyclopropane in such reactions. For instance, reaction of 2 with 

piperidine occurs at room temperature. The corresponding reaction in the 

case of the diester is conducted at 110 °C.
5
 Reactions with enolates also 

occur under mild conditions.
8
 Compound 2 reacts with the weak nucleophile 

pyridine at room temperature to give a betaine.
8
 An illustrative mechanism 

for the reaction of the acylal 2 with aniline to afford 2-oxo-1-phenyl-3-

pyrrolidinecarboxylic acid (3) is 
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The synthesis of the spiroacylal 2 from the diacid 1 follows a procedure used 

by Scheuer in a different context.
9
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Appendix  

Chemical Abstracts Nomenclature; (Registry Number) 

 

1,2-Dibromoethane (106-93-4) 

Ethyl cyanoacetate (105-56-6) 

Ethyl acetoacetate (141-97-9) 

Diethyl malonate (105-53-3) 

Isopropenyl acetate (108-22-5) 

Cyclopropane-1,1-dicarboxylic acid (598-10-7) 

Triethylbenzylammonium chloride (56-37-1) 

2-Oxo-1-phenyl-3-pyrrolidinecarboxylic acid,  3-Pyrrolidinecarboxylic acid, 

2-oxo-1-phenyl- (56137-52-1) 

6,6-Dimethyl-5,7-dioxaspiro[2.5]octane-4,8-dione (5617-70-9) 

1-Phenyl-3-carbomethoxypyrrolidin-2-one 

1-Cyanocyclopropanecarboxylic acid (6914-79-0) 

1-Acetylcyclopropanecarboxylic acid 

1,1-Dicarbethoxycyclopropane (1559-02-0) 

N-Phenyl-2-pyrrolidinone (4641-57-0) 
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