

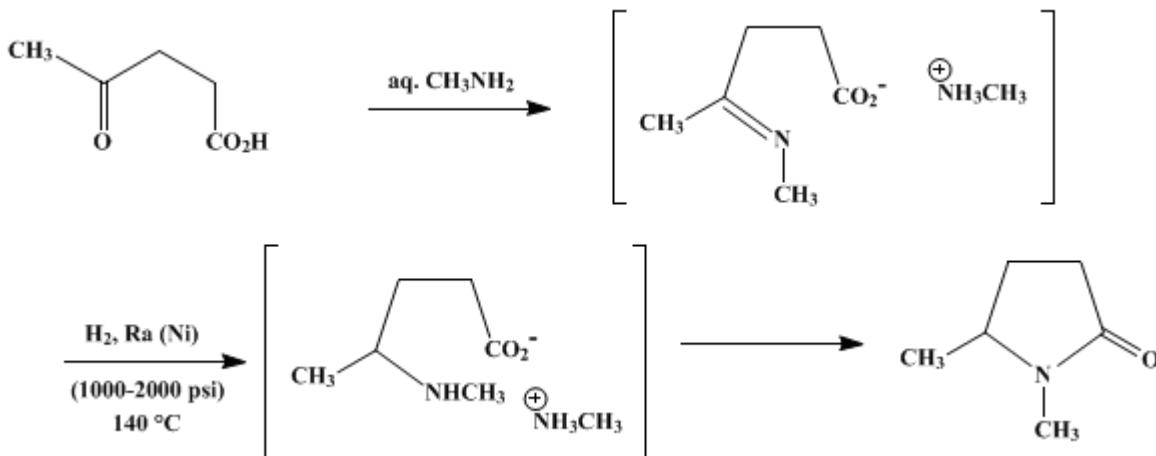


A Publication  
of Reliable Methods  
for the Preparation  
of Organic Compounds

## Working with Hazardous Chemicals

The procedures in *Organic Syntheses* are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at [http://www.nap.edu/catalog.php?record\\_id=12654](http://www.nap.edu/catalog.php?record_id=12654)). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.


The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.*, its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

*These paragraphs were added in September 2014. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.*

Organic Syntheses, Coll. Vol. 3, p.328 (1955); Vol. 27, p.28 (1947).

## 1,5-DIMETHYL-2-PYRROLIDONE

### [2-Pyrrolidone, 1,5-dimethyl-]



Submitted by Robert L. Frank, William R. Schmitz, and Blossom Zeidman.  
Checked by Arthur C. Cope and W. H. Jones.

### 1. Procedure

One hundred and ninety-four grams (170 ml., 1.67 moles) of levulinic acid (Note 1) and 500 ml. of 35% aqueous methylamine (sp. gr., 0.89; 3.94 moles of methylamine) (Note 2) are placed in a 2-l. steel reaction vessel of a high-pressure hydrogenation apparatus. Ten grams of Raney nickel catalyst<sup>1</sup> is added, the vessel is closed, and hydrogen is admitted to a pressure of 1000–2000 lb. The bomb is then heated with continuous agitation to  $140^\circ$  and maintained at that temperature for 5 hours (Note 3). The contents are removed, and the bomb is washed with two 100-ml. portions of water. After removal of the catalyst by filtration (Note 4), the filtrate is distilled under reduced pressure using a good column. A low-boiling fore-run of water and methylamine distils first, followed by the product, a colorless liquid boiling at  $84\text{--}86^\circ/13 \text{ mm.}$ ;  $102\text{--}104^\circ/27 \text{ mm.}$ ;  $n_D^{25} 1.4611$  (Note 5). The yield is 140–146 g. (74–77%).

### 2. Notes

1. A. E. Staley Manufacturing Company's Grade A levulinic acid was used.
2. Commercial 35% aqueous methylamine solution was used.
3. The course of the reaction may be followed by the drop in hydrogen pressure, the decrease depending upon the size of the bomb employed.
4. Because of its pyrophoric nature, the nickel catalyst should not be allowed to dry on the filter. A convenient alternative procedure for removing catalyst is to centrifuge the reaction mixture.
5. The product of some runs has a light yellow tint, but the color appears to cause no complications in subsequent reactions of the material.

### 3. Discussion

1,5-Dimethyl-2-pyrrolidone has been prepared by the reaction of 5-methyl-2-pyrrolidone with excess methyl iodide<sup>2</sup> and by the catalytic hydrogenation of a mixture of levulinic acid and methylamine.<sup>3</sup>

This preparation is referenced from:

- Org. Syn. Coll. Vol. 6, 615

---

## References and Notes

1. *Org. Syntheses Coll. Vol. 3*, 181 (1954).
2. Senfter and Tagel, *Ber.*, **27**, 2313 (1894).
3. Hoffman-LaRoche and Co., Ger. pat. 609,244 [*C. A.*, **29**, 3116 (1935)].

---

## Appendix Chemical Abstracts Nomenclature (Collective Index Number); (Registry Number)

hydrogen (1333-74-0)

nickel,  
Raney nickel (7440-02-0)

Methyl iodide (74-88-4)

LEVULINIC ACID (123-76-2)

methylamine (74-89-5)

1,5-Dimethyl-2-pyrrolidone,  
2-Pyrrolidone, 1,5-dimethyl- (5075-92-3)

5-methyl-2-pyrrolidone (108-27-0)