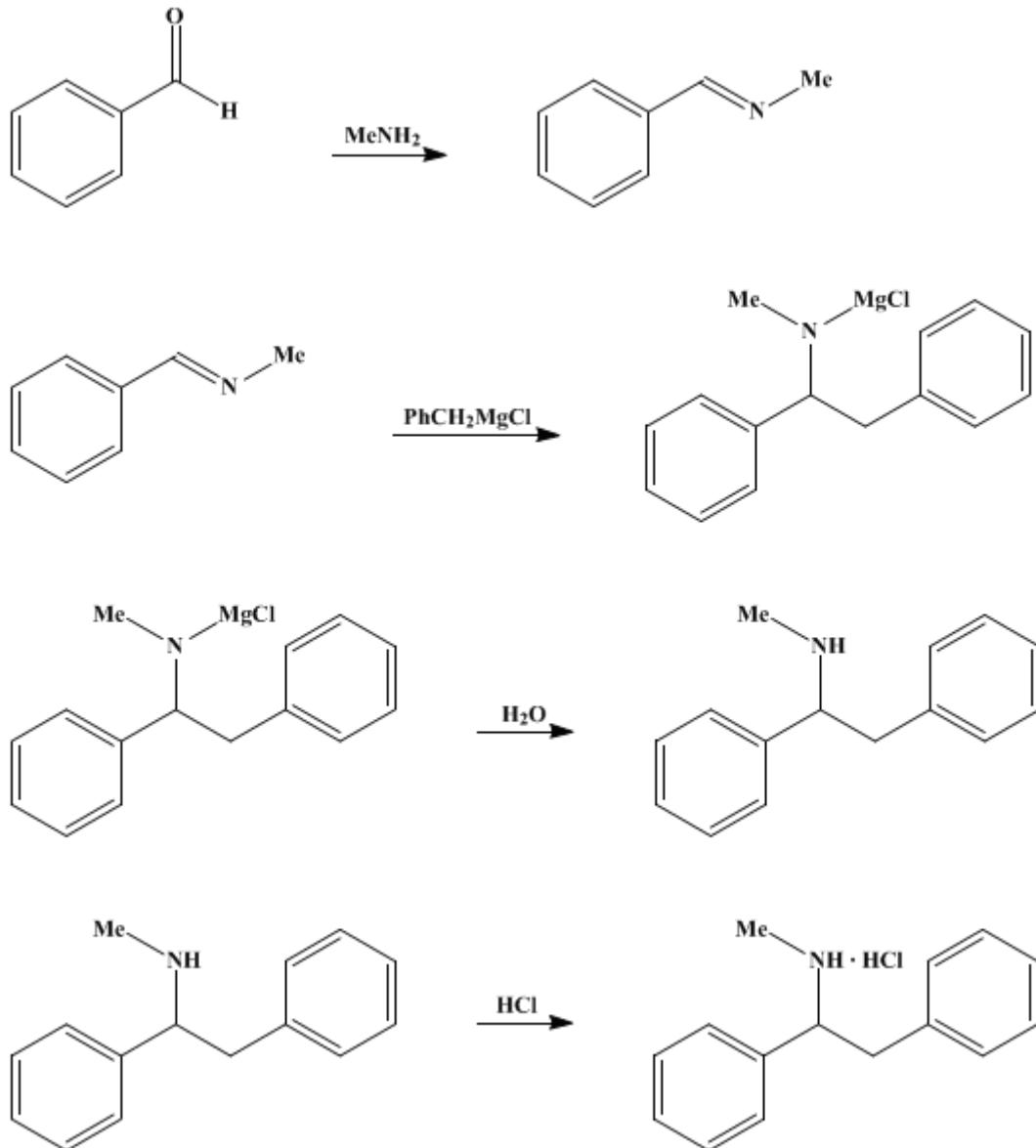


A Publication
of Reliable Methods
for the Preparation
of Organic Compounds

Working with Hazardous Chemicals

The procedures in *Organic Syntheses* are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.


The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.*, its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

These paragraphs were added in September 2014. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.

Organic Syntheses, Coll. Vol. 4, p.605 (1963); Vol. 34, p.64 (1954).

N-METHYL-1,2-DIPHENYLETHYLAMINE AND HYDROCHLORIDE

[Ethylamine, 1,2-diphenyl-N-methyl-]

Submitted by Robert Bruce Moffett¹
Checked by N. J. Leonard and L. A. Miller.

1. Procedure

A. *N*-Benzylidene*N*-methylamine. A solution of 31.9 g. (0.3 mole) of *benzaldehyde* in 80 ml. of *benzene* contained in a 300-ml. round-bottomed flask is cooled to approximately 10°. To this is added a solution of 14 g. (0.45 mole) of anhydrous *methylamine* in 50 ml. of *benzene* (Note 1). On standing, the solution becomes warm and turns milky. After 1 hour the flask is connected to a DeanStark water separator² which is attached to a reflux condenser, and the solvent is caused to reflux until no more water separates (Note 2). The water separator is then replaced by an 8-in. Vigreux column (Note 3), and

the solution is distilled under reduced pressure. After removal of the solvent, the product distils at 92–93°/34 mm. The yield is 31–34 g. (87–95%) of colorless liquid, n_D^{25} 1.5497, n_D^{20} 1.5528.

B. *N*-Methyl-1,2-diphenylethylamine. *Benzylmagnesium chloride* is prepared in a 1-l. three-necked flask as described previously,³ using 19.5 g. (0.8 g. atom) of *magnesium*, 92 ml. (102 g., 0.8 mole) of *benzyl chloride*, and 300 ml. of anhydrous *ether*. From the dropping funnel a solution of 24.0 g. (0.2 mole) of *N*-benzylidenemethylamine in 50 ml. of anhydrous *ether* or *benzene* (Note 3) is added slowly to the Grignard reagent with stirring. After being stirred at reflux temperature for 2 hours, the mixture is cooled and poured slowly into a mixture of ice and 200 ml. of concentrated *hydrochloric acid*. The layers are separated, the *ether* layer is extracted with 100 ml. of water, and the *ether* solution is discarded. The aqueous layer and water extract are combined, washed with 100 ml. of *ether*, and made strongly basic with about 600 ml. of 20% aqueous *sodium hydroxide* solution. The aqueous suspension of *magnesium hydroxide* is extracted with 800 ml. of *ether* in a continuous extractor for 48 hours. The *ether* extract is washed with about 150 ml. of water and dried over anhydrous *potassium carbonate*. The solution is filtered from the drying agent, the solvent is removed by distillation on a steam bath, and the residue is distilled from a Claisen flask under reduced pressure. The product distils at 83–90°/0.04 mm., 90–93°/0.2 mm., 94–97°/0.3 mm. The yield is 38.4–40.5 g. (91–96%) of colorless liquid, n_D^{25} 1.5640, n_D^{20} 1.5667.

C. *N*-Methyl-1,2-diphenylethylamine hydrochloride. Hydrogen chloride gas (Note 4) is passed into a stirred solution of 30 g. (0.14 mole) of *N*-methyl-1,2-diphenylethylamine in 500 ml. of anhydrous *ether* until saturated or until a drop of the *ether* on moistened pH test paper indicates that it is strongly acid. The hydrochloride separates as a colorless crystalline precipitate. It is collected on a suction filter, washed with *ether*, and dried. The yield is 34.2–35.1 g. (97–100%), and the product is practically pure, m.p. 184–186°. If desired it can be recrystallized by dissolution in a little *methanol* followed by addition of absolute *ether*.

2. Notes

1. *Methylamine* is most conveniently obtained commercially in cylinders. However, it can be generated by adding 50% aqueous *sodium hydroxide* solution dropwise to a flask containing the hydrochloride, and allowing the amine to distil. It can also be generated by allowing an aqueous solution of *methylamine* to drop into a flask containing solid *sodium* or *potassium hydroxide*. The *methylamine* is distilled directly below the surface of a weighed quantity of *benzene* kept just above its freezing point. The resulting solution is reweighed to determine the concentration, or an aliquot can be titrated with standard acid.
2. The collection of the theoretical amount of water (about 5.4 ml.) requires approximately 3 hours.
3. For the preparation of *N*-methyl-1,2-diphenylethylamine it is not absolutely necessary to distil the *N*-benzylidenemethylamine. The dried *benzene* solution can be used directly.
4. Hydrogen chloride gas is most conveniently obtained in a cylinder which should be connected to the outlet tube through a safety trap. It can be generated if desired.⁴

3. Discussion

The only practical method for preparing *N*-benzylidenemethylamine is by the reaction of *benzaldehyde* with *methylamine*.^{5,6,7}

N-Methyl-1,2-diphenylethylamine has been prepared in 8% yield by the Leuckart reaction from *deoxybenzoin* and *methylammonium formate*⁸ and by the present method.⁹

References and Notes

1. The Upjohn Company, Kalamazoo, Michigan.
2. *Org. Syntheses Coll. Vol. 3*, 382 (1955).
3. *Org. Syntheses Coll. Vol. 1*, 471 (1941).
4. *Org. Syntheses Coll. Vol. 1*, 293, 534 (1941).

5. Zaunschirm, *Ann.*, **245**, 279 (1888).
6. Kindler, *Ann.*, **431**, 187 (1923).
7. Campbell, Helbing, Florkowski, and Campbell, *J. Am. Chem. Soc.*, **70**, 3868 (1948).
8. Goodson, Wiegand, and Splitter, *J. Am. Chem. Soc.*, **68**, 2174 (1946).
9. Moffett and Hoehn, *J. Am. Chem. Soc.*, **69**, 1792 (1947).

Appendix
Chemical Abstracts Nomenclature (Collective Index Number);
(Registry Number)

N-METHYL-1,2-DIPHENYLETHYLAMINE AND HYDROCHLORIDE

potassium carbonate (584-08-7)

hydrogen chloride,
hydrochloric acid (7647-01-0)

Benzene (71-43-2)

methanol (67-56-1)

ether (60-29-7)

sodium hydroxide (1310-73-2)

magnesium (7439-95-4)

benzaldehyde (100-52-7)

potassium hydroxide (1310-58-3)

sodium (13966-32-0)

benzyl chloride (100-44-7)

benzylmagnesium chloride (6921-34-2)

magnesium hydroxide

methylamine (74-89-5)

N-Methyl-1,2-diphenylethylamine,
Ethylamine, 1,2-diphenyl-N-methyl- (53663-25-5)

N-benzylidenemethylamine (622-29-7)

N-Methyl-1,2-diphenylethylamine hydrochloride (7400-77-3)

deoxybenzoin (451-40-1)

methylammonium formate

Copyright © 1921-2005, Organic Syntheses, Inc. All Rights Reserved