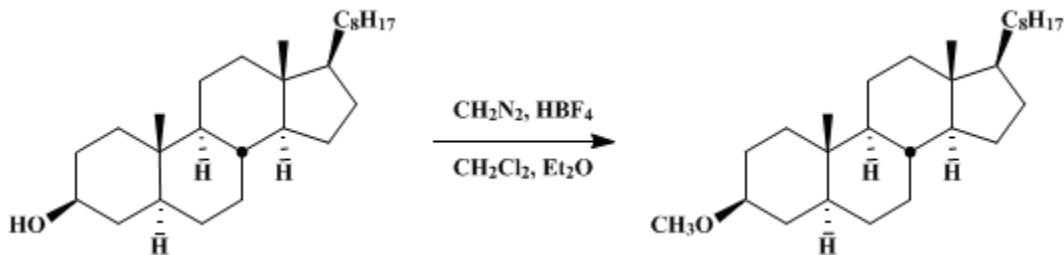


A Publication
of Reliable Methods
for the Preparation
of Organic Compounds

Working with Hazardous Chemicals

The procedures in *Organic Syntheses* are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.


The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.*, its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

These paragraphs were added in September 2014. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.

Organic Syntheses, Coll. Vol. 5, p.245 (1973); Vol. 41, p.9 (1961).

CHOLESTANYL METHYL ETHER

[Cholestane, 3 β -methoxy-]

Submitted by M. Neeman^{1,2} and William S. Johnson¹.

Checked by F. Kaplan and John D. Roberts.

1. Procedure

To a solution of 0.200 g. (0.515 mmole) of dry **dihydrocholesterol** (Note 1) in 10 ml. of **methylene chloride** contained in a 50-ml. Erlenmeyer flask is added 0.3 ml. of a catalyst stock solution containing 0.0016 ml. (0.018 mmole) of concentrated **fluoboric acid** (Note 2) in 3:1 anhydrous **diethyl ether**-**methylene chloride** (Note 3). The solution is swirled, and a 0.45M solution of **diazomethane** (Note 4) in dry **methylene chloride** is added from a buret (Note 5) at a rate of about 2 ml. per minute. The yellow color of **diazomethane** disappears rapidly on contact with the reaction mixture and **nitrogen** is vigorously evolved. When about 3 ml. of **diazomethane** solution has been added, the reaction becomes sluggish. The yellow color persists for several minutes after the total amount of 3.9 ml. of **diazomethane** solution (1.76 mmoles) has been added (Note 6). After 1 hour the reaction mixture is filtered to remove a small amount of amorphous polymethylene, which is washed with **methylene chloride**. The washings are combined with the **methylene chloride** solution, washed with 5 ml. of saturated aqueous **sodium bicarbonate**, with three 5-ml. portions of water, and dried over anhydrous **sodium sulfate**. The solvent is removed on a steam bath in a stream of **nitrogen** and finally at reduced pressure. The crystalline residue of 0.207 g. (Note 7) is recrystallized in a 10-ml. conical flask from 1 ml. of **acetone**. When the flask has cooled to room temperature, 0.5 ml. of **methanol** is added, and the flask is chilled to +2° for 2 hours. The crystals are collected on a tared Hirsch funnel of 40-mm. diameter, washed on the funnel with two 0.5-ml. portions of ice-cold **methanol**, and dried for 2 hours at 40°/2 mm. The first crop of **cholestanyl methyl ether** thus obtained forms large colorless glistening plates, m.p. 85.5–86° (Note 8). An additional 0.002 g. of pure methyl ether adheres to the flask and spatula and is collected by washing with **acetone**. The total first crop material (0.197 g.) represents a 95% yield of methyl ether (Note 9).

2. Notes

1. Satisfactory material of melting point 143–143.5° is prepared as already described,³ and dried for 2 hours at 110°/2 mm.
2. Commercial 50% **fluoboric acid** is evaporated at 50–60°/5 mm. to afford a residue of about 11N total acidity, which is satisfactory for use as a catalyst.
3. The catalyst stock solution should be freshly prepared by placing 19 ml. of anhydrous **diethyl ether** in a 25-ml. volumetric flask cooled to 0° and adding 0.133 ml. of concentrated **fluoboric acid** (Note 2). The volume is made up to 25 ml. with **methylene chloride**.
4. **Diazomethane** solution in dry **methylene chloride** may be prepared from **N-nitroso-N-methyl-N'-nitroguanidine** by a procedure based on McKay's method.^{4,5} **Methylene chloride** is substituted for **diethyl ether** used in the original procedure. A satisfactory solution of **diazomethane** is obtained, without distilling, by separating the **methylene chloride** layer from the reaction mixture, drying it for 2 hours over **potassium hydroxide pellets**, and decanting through a funnel plugged loosely with cotton. The **diazomethane** solution is kept in a loosely stoppered test tube immersed in a Dewar flask containing Dry Ice during the drying period and prior to use. *All handling of the highly toxic diazomethane should be*

done in an efficiently exhausted hood. Attention is called to other precautions;⁶ see also pp. 16-17.

Rigorous drying and exclusion of moisture are not necessary. The concentration of **diazomethane** solutions is determined by analysis,⁶ using about 0.12 g. of **benzoic acid** per milliliter of solution and assuming a concentration of about 0.8M as in McKay's method.⁵ Solutions approximately 0.45M are obtained by appropriate dilution.

5. Burets with ground-glass stopcocks should not be used, as leaking is caused by polymethylene formed preferentially on the ground surfaces. A buret such as "Ultramax F and P," having a stopcock of plastic material, is satisfactory. The buret should be filled immediately before commencement of the reaction to keep the **diazomethane** solution cool and thus to minimize polymerization. The technique used is very similar to that of a titration, and a number of methylations of prepared batches can be quickly performed with one filling of the buret.

6. Addition of a drop of catalyst stock solution after addition of **diazomethane** solution is complete causes rapid disappearance of the yellow color. The yield is not affected.

7. The crude reaction product is slightly yellow and has a very faint ammoniacal odor. It may be dissolved in **acetone**; on slow evaporation to dryness, the solution leaves large glistening transparent plates of good-quality **cholestanyl methyl ether**, m.p. 83-85°.

8. All melting points are corrected for stem exposure. Reported⁷ melting point 83°.

9. The mother liquor may be evaporated to dryness and the slightly colored residue recrystallized in a 3-ml. conical flask from 6 drops of 1:1 **acetone-methanol**. The resulting large plates are easily transferred to a small Hirsch funnel and washed with 5 drops of **methanol**. This second crop of colorless methyl ether amounts to 0.010 g., m.p. 78.5-79.5°.

3. Discussion

Cholestanyl methyl ether has been prepared by catalytic hydrogenation of **cholesteryl methyl ether**^{7,8} and of **cholest-4-en-3-one** in methanolic **hydrobromic acid**,⁸ and by methylation of **cholestanol** with **methyl iodide** in the presence of "activated" **silver oxide** and **sodium hydroxide**.⁹ The reported¹⁰ formation of **cholestanyl methyl ether** from **epicholestanol** in 96% yield by refluxing with "molecular" **potassium** in benzene and subsequent treatment with **methyl iodide** stands unconfirmed.¹¹ Methanolysis of **epicholestanyl tosylate** afforded a 23% yield of **cholestanyl methyl ether**.¹² The procedure described here,¹³ with slight changes in the molar proportions of the reactants, also gave a 98% yield of **epicholestanyl methyl ether** from **epicholestanol**, and a 95% yield of **cholesteryl methyl ether** from **cholesterol**.

4. Merits of Preparation

The present procedure is illustrative of the utility of the general method for preparation of methyl ethers from **diazomethane** and alcohols with fluoboric acid as catalyst.¹³

References and Notes

1. Department of Chemistry, University of Wisconsin, Madison, Wis.
2. On leave from Technion Israel Institute of Technology, Haifa, Israel.
3. W. F. Bruce and J. O. Ralls, *Org. Syntheses, Coll. Vol. 2*, 191 (1943).
4. A. F. McKay, *J. Am. Chem. Soc.*, **70**, 1974 (1948);
5. A. F. McKay et al., *Can. J. Research*, **28B**, 683 (1950).
6. F. Arndt, *Org. Syntheses, Coll. Vol. 2*, 165 (1943).
7. Th. Wagner-Jauregg and L. Werner, *Z. Physiol. Chem.* **213**, 119 (1932).
8. J. C. Babcock and L. F. Fieser, *J. Am. Chem. Soc.*, **74**, 5472 (1952).
9. J. L. Dunn, I. M. Heilbron, R. F. Phipers, K. M. Samant, and F. S. Spring, *J. Chem. Soc.*, 1576 (1934).
10. J. H. Benyon, I. M. Heilbron, and F. S. Spring, *J. Chem. Soc.*, 406 (1937).
11. J. R. Lewis and C. W. Shoppee, *J. Chem. Soc.*, 1375 (1955), have obtained **epicholestanyl methyl ether** under these conditions.
12. H. R. Nace, *J. Am. Chem. Soc.*, **74**, 5937 (1952).
13. M. C. Caserio, J. D. Roberts, M. Neeman, and W. S. Johnson, *J. Am. Chem. Soc.*, **80**, 2584

Appendix
Chemical Abstracts Nomenclature (Collective Index Number);
(Registry Number)

fluoboric acid

polymethylene

epicholestanol

epicholestanyl methyl ether

epicholestanyl tosylate

Benzene (71-43-2)

methanol (67-56-1)

diethyl ether (60-29-7)

sodium hydroxide (1310-73-2)

sodium bicarbonate (144-55-8)

silver oxide (20667-12-3)

HYDROBROMIC ACID (10035-10-6)

sodium sulfate (7757-82-6)

nitrogen (7727-37-9)

Benzoic acid (65-85-0)

acetone (67-64-1)

potassium hydroxide pellets (1310-58-3)

potassium (7440-09-7)

Methyl iodide (74-88-4)

methylene chloride (75-09-2)

Dihydrocholesterol,
cholestanol (80-97-7)

Cholesterol (57-88-5)

Diazomethane (334-88-3)

acetone-methanol (590-90-9)

Cholest-4-en-3-one (601-57-0)

N-nitroso-N-methyl-N'-nitroguanidine (674-81-7)

Cholestanyl methyl ether (1981-90-4)

Cholestane, 3 β -methoxy-

diethyl ether-methylene chloride

cholesteryl methyl ether

Copyright © 1921-2005, Organic Syntheses, Inc. All Rights Reserved