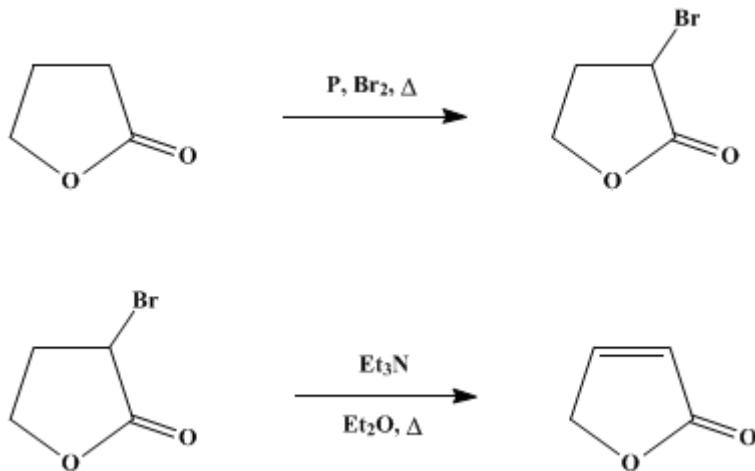


A Publication
of Reliable Methods
for the Preparation
of Organic Compounds

Working with Hazardous Chemicals

The procedures in *Organic Syntheses* are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.


The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.*, its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

These paragraphs were added in September 2014. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.

Organic Syntheses, Coll. Vol. 5, p.255 (1973); Vol. 45, p.22 (1965).

γ -CROTONOLACTONE

[$\Delta^{\alpha,\beta}$ -Butenolide]

Submitted by Charles C. Price and Joseph M. Judge¹.
Checked by Richard F. Atkinson and E. J. Corey.

1. Procedure

Caution! Contact with α -bromo- γ -butyrolactone can cause severe eye and skin irritation. This preparation should be carried out in a good hood, and the operator should wear protective goggles and rubber gloves.

A. *α -Bromo- γ -butyrolactone.* In a 1-l., three-necked, round-bottomed flask equipped with a dropping funnel, sealed stirrer, and an efficient reflux condenser (Note 1) are placed 100 g. (1.16 moles) of redistilled γ -butyrolactone and 13.4 g. (0.43 g. atom) of red phosphorus. Over a half-hour interval, 195 g. (66.5 ml., 1.22 moles) of bromine is added, the mixture being stirred moderately and cooled by an ice bath.

This mixture is heated to 70° and an additional 195 g. (66.5 ml., 1.22 moles) of bromine added over a half-hour interval. After the bromine addition, the temperature is raised to 80° and the mixture held at that temperature for 3 hours. Air is blown into the cooled reaction until the excess bromine and hydrogen bromide are removed (Note 1). This process usually requires one hour (Note 2).

The aerated reaction mixture is heated to 80° and 25 ml. of water is added cautiously, with stirring. A vigorous reaction ensues, and upon cessation of the reaction an additional 300 ml. of water is added.

The reaction mixture of two layers and some solid residue is heated under reflux for 4 hours. Upon cooling, two layers again appear. The product is extracted with two portions of ether (200 ml. each), and the extracts are dried over magnesium sulfate (Note 3). *Care should be taken since the α -bromolactone is a vesicant.*

The dried crude material is distilled, b.p. 125–127° (13 mm.), $n^{25}D$ 1.5030, yield 105 g. (55%).

B. *$\Delta^{\alpha,\beta}$ -Butenolide.* In a 500-ml. three-necked flask fitted with a mechanical stirrer, a reflux condenser, and a 250-ml. dropping funnel containing a solution of 61 g. (84.5 ml., 0.6 mole) of triethylamine in 70 ml. of dry diethyl ether, a solution of 83 g. (0.5 mole) of α -bromo- γ -butyrolactone and 200 ml. of dry diethyl ether is heated to reflux, with stirring. The amine solution is added, slowly, during 5 hours and the stirring under reflux continued for an additional 24 hours. The brown precipitate

(40 g.) is removed by filtration. Most of the solvent is removed from the filtrate by evaporation, and the additional precipitate (8 g.) is removed. This precipitate is predominantly [triethylamine hydrobromide](#). The liquid residue is distilled under reduced pressure and the $\Delta^{\alpha,\beta}$ -butenolide is collected at 107–109° (24 mm.); yield 25 g. (60%, 33% overall), m.p. 5°^{2,3,4} (Note 4).

2. Notes

1. A trap to catch the resulting bromine-hydrogen bromide vapors is desirable.
2. Plieninger⁵ reports that the product at this stage is α,γ -dibromobutyryl bromide.
3. Extraction with [ether](#) is necessary to separate the bromolactone efficiently.
4. The infrared spectrum of [\$\gamma\$ -crotonolactone](#) shows two bands in the carbonyl region at 5.60 and 5.71 μ in [carbon tetrachloride](#) (5%) [shifted to 5.61 and 5.71 μ . in [chloroform](#) (5%)] and carbon-carbon stretching absorption at 6.23 μ . The nuclear magnetic resonance spectrum shows olefinic peaks centered at 2.15 τ (pair of triplets) and 3.85 τ (pair of triplets), each due to one proton, and a two-proton triplet centered at 5.03 τ (in CCl_4).
In the ultraviolet, [\$\gamma\$ -crotonolactone](#) shows end absorption at 205 m μ (ϵ ca. 11,000) and no maximum at higher wavelength.
Oxidation of this product by [potassium permanganate](#) affords [2,3-dihydroxy-4-butyrolactone](#).²

3. Discussion

The original preparation of [\$\gamma\$ -crotonolactone](#) by Lespieau involved a five-step sequence from [epichlorohydrin](#) and [sodium cyanide](#).² A recent detailed study of this procedure reported an overall yield of 25% for the lactone.³ Glattfeld⁴ used a shorter route from [glycerol chlorohydrin](#) and [sodium cyanide](#); hydrolysis and distillation of the intermediate dihydroxy acid yielded [\$\gamma\$ -crotonolactone](#) in 23% yield and [\$\beta\$ -hydroxy- \$\gamma\$ -butyrolactone](#) in 28% yield.⁴ The formation of [\$\gamma\$ -crotonolactone](#) in 15% yield has also been reported from pyrolysis of [2,5-diacetoxy-2,5-dihydrofuran](#) at 480–500°.⁶ The lactone has been prepared in 37% overall yield from [propynol](#) by carboxylation and hydrogenation.⁷

The formation of [\$\alpha\$ -bromo- \$\gamma\$ -butyrolactone](#) has been reported in 70% yield by uncatalyzed reaction of [bromine](#) at 160–170°,⁸ as well as by the catalyzed procedure used here.³

4. Merits of the Preparation

[\$\gamma\$ -Crotonolactone](#) is the simplest example of the butenolide ring system, which occurs in many natural products. In view of the availability of [butyrolactone](#), the present procedure represents the most convenient method of synthesis of the unsaturated lactone.

The dehydrohalogenation by a tertiary amine illustrates the utility of such amines for dehydrohalogenations which produce a double bond normally activated for attack by many bases.⁹

References and Notes

1. Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
2. M. Lespieau, *Compt. Rend.*, **138**, 1050 (1904); *Bull. Soc. Chim. France*, [4] **1**, 1113 (1907).
3. R. Rambaud, S. Ducher, A. Broche, M. Brini-Fritz, and M. Vessiere, *Bull. Soc. Chim. France*, 877 (1955); R. Rambaud and S. Ducher, *Bull. Soc. Chim. France*, 466 (1956).
4. J. W. E. Glattfeld, G. Leavell, G. E. Spieth, and D. Hutton, *J. Am. Chem. Soc.*, **53**, 3168 (1931).
5. H. Plieninger, *Ber.*, **83**, 265 (1950).
6. N. Clauson-Kaas and N. Elming, *Acta Chem. Scand.*, **6**, 560 (1952).
7. R. J. D. Smith and R. N. Jones, *Can. J. Chem.*, **37**, 2092 (1959).
8. G. Bischoff, Swiss Patent 264,598 (1950) [C.A., **45**, 1622d (1951)].
9. C. Grundmann and E. Kober, *J. Am. Chem. Soc.*, **77**, 2332 (1955).

Appendix
Chemical Abstracts Nomenclature (Collective Index Number);
(Registry Number)

bromolactone

$\Delta^{\alpha,\beta}$ -Butenolide

α -bromolactone

bromine-hydrogen bromide

glycerol chlorohydrin

ether,
diethyl ether (60-29-7)

chloroform (67-66-3)

Epichlorohydrin (106-89-8)

potassium permanganate (7722-64-7)

sodium cyanide (143-33-9)

hydrogen bromide (10035-10-6)

bromine (7726-95-6)

PHOSPHORUS (7723-14-0)

carbon tetrachloride (56-23-5)

γ -butyrolactone,
Butyrolactone (96-48-0)

magnesium sulfate (7487-88-9)

triethylamine (121-44-8)

γ -Crotonolactone (497-23-4)

α -Bromo- γ -butyrolactone (5061-21-2)

triethylamine hydrobromide (636-70-4)

α,γ -dibromobutyryl bromide

2,3-dihydroxy-4-butyrolactone (15667-21-7)

β -hydroxy- γ -butyrolactone (7331-52-4)

2,5-diacetoxy-2,5-dihydrofuran

propynol

Copyright © 1921-2005, Organic Syntheses, Inc. All Rights Reserved