



A Publication  
of Reliable Methods  
for the Preparation  
of Organic Compounds

## Working with Hazardous Chemicals

The procedures in *Organic Syntheses* are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at [http://www.nap.edu/catalog.php?record\\_id=12654](http://www.nap.edu/catalog.php?record_id=12654)). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.

The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.*, its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

*These paragraphs were added in September 2014. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.*

Organic Syntheses, Coll. Vol. 5, p.306 (1973); Vol. 49, p.35 (1969).

## 1,2-CYCLONONADIENE



Submitted by L. Skattebøl and S. Solomon<sup>1</sup>.

Checked by L. S. Keller and K. B. Wiberg.

### 1. Procedure

A. *9,9-Dibromobicyclo[6.1.0]nonane*. A dry 3-l. three-necked flask is fitted with a glass stopper, stirrer, and condenser. The flask is kept under a positive *nitrogen* pressure by means of a gas-trap arrangement connected to the top of the condenser (Note 1). The flask is quickly charged with 2 l. of anhydrous *t*-butyl alcohol (Note 2) and 73 g. (1.87 g. atoms) of *potassium* metal. (*Caution! See earlier volume<sup>2</sup> for handling of this metal.*) The flow of *nitrogen* is stopped and the mixture is stirred and boiled under reflux until the *potassium* has reacted, *hydrogen* being liberated through the trap. The condenser is arranged for distillation by means of an adapter. The glass stopper is replaced by a pressure-equalized dropping funnel with the *nitrogen* inlet connected to the top. About 1.5 l. of *t*-butyl alcohol (Note 3) is then distilled into a predried flask under an atmosphere of *nitrogen*. A water pump is then connected, the *nitrogen* inlet is closed, and the distillation is continued under reduced pressure while the three-necked flask is gradually heated to 150° in an oil bath. Finally, the water pump is replaced by an oil pump and the white remaining solid is heated at 150° under a pressure of 0.1–1 mm. for 2 hours. The connection to the vacuum system is closed, the oil bath removed, and *nitrogen* again introduced. The condenser with adapter is replaced by a glass stopper, and the flask is cooled in an ice-salt bath.

Freshly distilled *cis*-*cyclooctene*, 178 g. (214 ml., 1.62 moles) (Note 4) and 200 ml. of sodium-dried pentane (Note 5) are introduced to the flask, and the dropping funnel is charged with 420 g. (148 ml., 1.66 moles) of *bromoform* (Note 6). The *bromoform* is added dropwise to the stirred slurry over a period of 6–7 hours, the color of the reaction mixture changing gradually from light yellow to brown. When the addition is complete, the reaction mixture is allowed to warm to room temperature and left stirring overnight. Water (400 ml.) is added to the reaction mixture followed by enough 10% aqueous *hydrochloric acid* to neutralize the slightly basic solution. The reaction mixture is transferred to a separatory funnel and the organic layer is separated. The aqueous layer is extracted with three 50-ml. portions of *pentane*, and the combined *pentane* solutions are washed with three 50-ml. portions of water. The *pentane* solution is dried over anhydrous *magnesium sulfate*, filtered, and stripped of solvent on a rotary evaporator. Distillation of the residue yields 237–299 g. (52–65%) of *9,9-dibromobicyclo[6.1.0]nonane*, b.p. 62° (0.04 mm.), *n*<sup>23</sup>*D* 1.5493–1.5507 (Note 7).

B. *1,2-Cyclononadiene*. A dry 2-l. three-necked flask is equipped with mechanical stirrer, pressure-equalized dropping funnel, and a *nitrogen* inlet tube connected to a gas-trap arrangement (Note 1). To the flask are added 187 g. (116 ml., 0.66 mole) of *9,9-dibromobicyclo[6.1.0]nonane* and 100 ml. of anhydrous *ether*. The dropping funnel is charged with 450 ml. of 1.9*M* *ether* solution of *methylolithium* (0.85 mole) (Note 8). The flask is cooled by means of an acetone-dry ice bath maintained at -30° to -40°, and the *methylolithium* is added dropwise with stirring during 1 hour (Note 9). After the addition is complete, the reaction mixture is stirred for 30 minutes, and excess lithium reagent is decomposed by

dropwise addition of 100 ml. of water. An additional 400 ml. of water is then added, and the **ether** layer is separated. The aqueous layer is extracted with three 30-ml. portions of **ether**. The combined **ether** solutions are washed with 30-ml. portions of water until neutral and dried over **magnesium sulfate**. The latter is filtered and the **ether** is distilled through a 40-cm Vigreux column. Distillation of the residue (Note 10) yields 66–73 g. (81–91%) of **1,2-cyclononadiene**, b.p. 62–63° (16 mm.),  $n^{20}D$  1.5060 (Note 11).

## 2. Notes

1. A suitable gas-trap has been described.<sup>3</sup> **Mercury** can conveniently be replaced by paraffin oil.
2. Reagent grade ***t*-butyl alcohol** distilled from **calcium hydride** was used.
3. The ***t*-butyl alcohol** thus recovered can be used for a second preparation without further purification.
4. **cis-Cyclooctene** was obtained from Columbia Organic Chemicals or Aldrich Chemical Co. It was distilled from **sodium** and a fraction, b.p. 81–82° (95 mm.),  $n^{25}D$  1.4682, was used. Gas chromatography showed 98% purity, the impurity being mainly **cyclooctane**.
5. **Pentane** is added as a diluent in order to obtain an easily stirred slurry. Amounts varying from 100 to 250 ml. per mole of olefin have been used with no appreciable change in yield of product.
6. Reagent grade **bromoform** was used without further purification.
7. The submitters have also used commercially available dry **potassium *t*-butoxide** with varying success in this reaction; with a sample purchased from M.S.A. Research Corporation a 65% yield of product was obtained. The submitters reported a 65–76% yield range for this step.
8. An ethereal solution of **methyl lithium** was either prepared from **lithium** metal and **methyl bromide** or purchased from Alfa Inorganics, Inc. Concentrations of 0.5–2M were used with no change in result.
9. Solid **methyl lithium** and lithium halide occasionally separate out on the tip of the dropping funnel, probably owing to the low temperature, and this may cause plugging. It can be avoided by using a faster rate of addition.
10. The submitters used a 40-cm. spinning band column. Owing to polymerization of the product, the checkers obtained consistently low yields when this column was used. Distillation through a 40-cm. Vigreux column gave the indicated yield without a significant decrease in product purity.
11. The product is more than 99% pure as shown by gas chromatography.

## 3. Discussion

Cyclic allenes have previously been obtained only admixed with the isomeric acetylenes.<sup>4</sup> The present two-step synthesis is a practical method for the preparation of cyclic allenes, and at the same time it describes a general method for the preparation of allenes.<sup>5,6</sup> It is based on the original work of Doering and co-workers.<sup>7</sup> Examples of the reaction sequence above are known in which allenes are not produced,<sup>8</sup> or they represent only a part of the reaction products.<sup>9</sup> A one-step synthesis of **1,2-cyclononadiene** has been reported.<sup>10</sup>

**R-(+)-1,2-Cyclononadiene** and **S-(−)-1,2-cyclononadiene** have been prepared from **R-(−)-** and **S-(+)-trans-cyclooctene**, respectively.<sup>11</sup> Optically active **1,2-cyclononadiene** has also been obtained when the reaction of the dibromo bicyclo intermediate with **methyl lithium** is carried out in the presence of an optically active amine.<sup>12</sup> Reduction of **1,2-cyclononadiene** with **sodium** in liquid **ammonia** gives **cis-cyclononadiene** in almost quantitative yield.<sup>13</sup>

---

## References and Notes

1. Union Carbide Research Institute, Tarrytown, New York.
2. **W. S. Johnson and W. P. Schneider**, *Org. Syntheses*, Coll. Vol. 4, 132 (1963).
3. L. F. Fieser, "Experiments in Organic Chemistry," 3rd ed., D. C. Heath and Co., Boston, 1957, p. 267; A. L. Vogel, "A Textbook of Practical Organic Chemistry," 3rd ed., John Wiley & Sons, New York, 1962, p. 69.
4. A. T. Blomquist, L. H. Liu, and J. C. Bohrer, *J. Am. Chem. Soc.*, **74**, 3643 (1952).
5. L. Skattebøl, *Tetrahedron Lett.*, 167 (1961); *Acta Chem. Scand.*, **17**, 1683 (1963).
6. W. R. Moore and H. R. Ward, *J. Org. Chem.*, **27**, 4179 (1962).

7. W. von E. Doering and A. K. Hoffmann, *J. Am. Chem. Soc.*, **76**, 6162 (1954); W. von E. Doering and P. M. LaFlamme, *Tetrahedron*, **2**, 75 (1958).
  8. W. R. Moore and H. R. Ward, *J. Org. Chem.*, **25**, 2073 (1960); W. R. Moore, H. R. Ward, and R. F. Merritt, *J. Am. Chem. Soc.*, **83**, 2019 (1961).
  9. L. Skattebøl, *J. Org. Chem.*, **31**, 2789 (1966); *Tetrahedron*, **23**, 1107 (1967); L. Skattebøl, *Tetrahedron Lett.*, 2361 (1970); A. C. Cope, W. R. Moore, K. G. Taylor, P. Muller, S. S. Hall, and Z. L. F. Gaibel, *Tetrahedron Lett.*, 2365 (1970); W. R. Moore and J. B. Hill, *Tetrahedron Lett.*, 4343, 4553 (1970); M. S. Baird, *Chem. Commun.*, 1145 (1971).
  10. K. G. Untch, D. J. Martin, and N. T. Castellucci, *J. Org. Chem.*, **30**, 3572 (1965).
  11. A. C. Cope, W. R. Moore, R. D. Bach, and H. J. S. Winkler, *J. Am. Chem. Soc.*, **92**, 1243 (1970); W. R. Moore, R. D. Bach, and T. M. Ozreitch, *J. Am. Chem. Soc.*, **91**, 5918 (1969); W. R. Moore, H. W. Anderson, S. D. Clark, and T. M. Ozreitch, *J. Am. Chem. Soc.*, **93**, 4932 (1971); W. R. Moore and R. D. Bach, *J. Am. Chem. Soc.*, **94**, 3148 (1972); R. D. Bach, U. Mazur, R. N. Brummel, and L.-H. Liu, *J. Am. Chem. Soc.*, **93**, 7120 (1971).
  12. H. Nozaki, T. Aratani, T. Toraya, and R. Noyori, *Tetrahedron*, **27**, 905 (1971).
  13. P. D. Gardner and M. Narayana, *J. Org. Chem.*, **26**, 3518 (1961); D. Devaprabhakara and P. D. Gardner, *J. Am. Chem. Soc.*, **85**, 648 (1963).
- 

## Appendix Chemical Abstracts Nomenclature (Collective Index Number); (Registry Number)

sodium-dried pentane

S-(-)-1,2-cyclononadiene

R-(-)- and S-(+)-trans-cyclooctene

hydrochloric acid (7647-01-0)

ammonia (7664-41-7)

ether (60-29-7)

hydrogen (1333-74-0)

nitrogen (7727-37-9)

mercury (7439-97-6)

sodium (13966-32-0)

methyl bromide (74-83-9)

potassium (7440-09-7)

Pentane (109-66-0)

bromoform (75-25-2)

[lithium](#) (7439-93-2)

[magnesium sulfate](#) (7487-88-9)

[Methylolithium](#) (917-54-4)

[t-butyl alcohol](#) (75-65-0)

[calcium hydride](#) (7789-78-8)

[1,2-Cyclononadiene](#),  
[R-\(+\)-1,2-Cyclononadiene](#) (1123-11-1)

[9,9-Dibromobicyclo\[6.1.0\]nonane](#) (1196-95-8)

[cyclooctane](#) (292-64-8)

[potassium t-butoxide](#) (865-47-4)

[cis-cyclooctene](#) (931-87-3)

[cis-cyclononadiene](#)

Copyright © 1921-2005, Organic Syntheses, Inc. All Rights Reserved