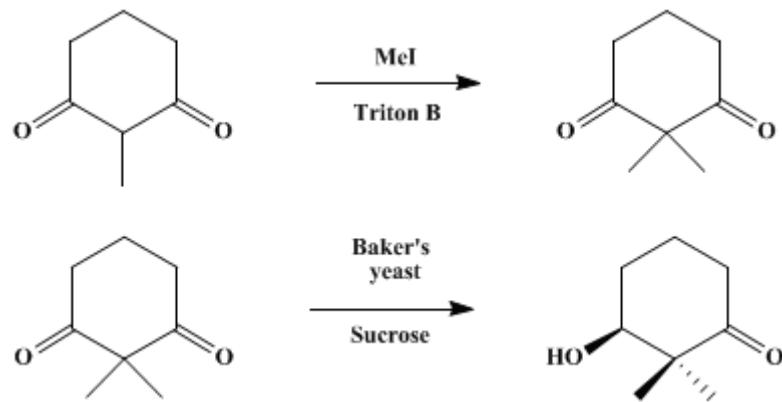


A Publication
of Reliable Methods
for the Preparation
of Organic Compounds

Working with Hazardous Chemicals

The procedures in *Organic Syntheses* are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.


The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.*, its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

These paragraphs were added in September 2014. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.

Organic Syntheses, Coll. Vol. 8, p.312 (1993); Vol. 68, p.56 (1990).

YEAST REDUCTION OF 2,2-DIMETHYLCYCLOHEXANE-1,3-DIONE: (S)-(+)-3-HYDROXY-2,2-DIMETHYLCYCLOHEXANONE

[Cyclohexanone, 3-hydroxy-2,2-dimethyl-, (S)-]

Submitted by Kenji Mori and Hideto Mori¹.

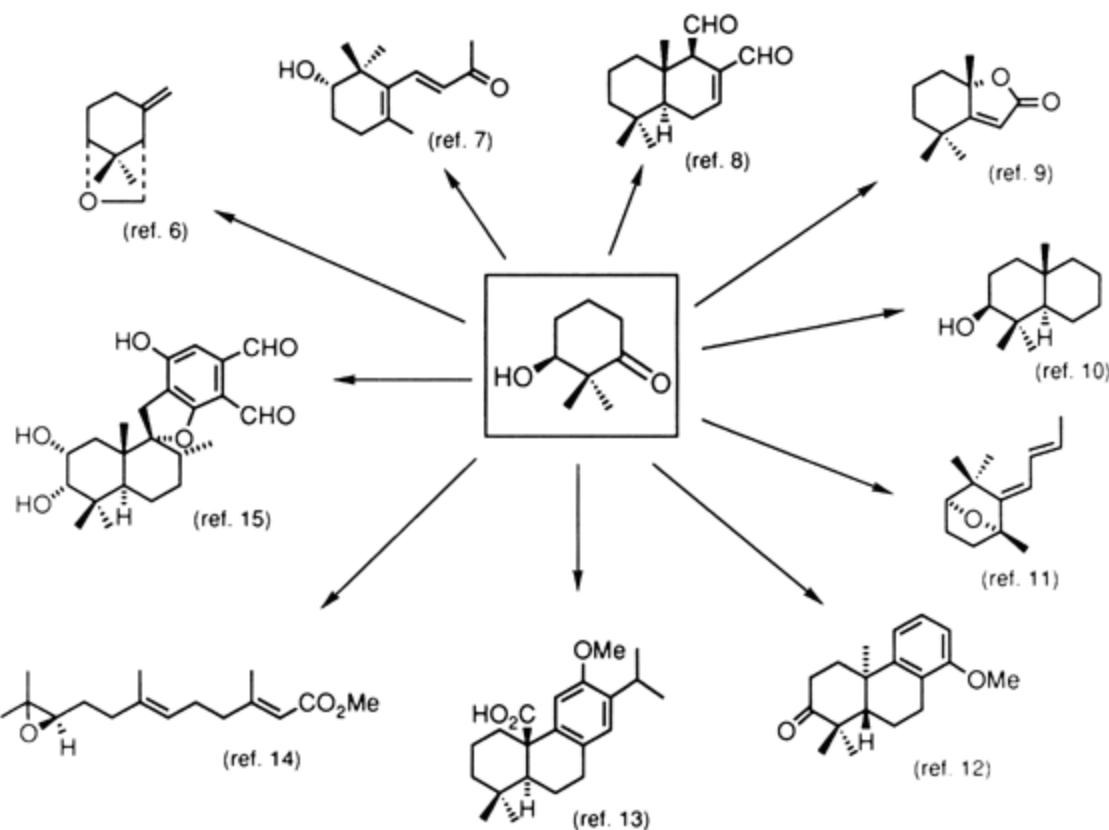
Checked by Mark Hopkins and Larry E. Overman.

1. Procedure

A. *2,2-Dimethylcyclohexane-1,3-dione*. In a 1-L, three-necked, round-bottomed flask equipped with a magnetic stirrer, a 200-mL pressure-equalizing dropping funnel, and a reflux condenser (the top of which is connected to a calcium chloride drying tube) are placed 50.4 g (0.4 mol) of *2-methylcyclohexane-1,3-dione*² and 500 mL of dry *methanol*. To this stirred solution is added dropwise 168 mL of commercial Triton B (40% in *methanol*) (Note 1) and (Note 2). After the addition is complete, the resulting solution is stirred at room temperature for 10 min and 60.0 g (0.423 mol) of *methyl iodide* is added portionwise. This solution is then stirred and heated under reflux for 16–20 hr (Note 3). After the reaction mixture is cooled to room temperature, about 400 mL of *methanol* is removed by rotary evaporation. The residue is poured into a mixture of 100 mL (1.2 mol) of concentrated *hydrochloric acid* and about 100 g of ice to decompose the O-alkylated product (Note 4), and the mixture is stirred for 30 min. The precipitated solid (recovered starting material) is collected by filtration and the filtrate is extracted 4 times with 100 mL of *ethyl acetate*. The combined *ethyl acetate* extracts are washed with 5% *sodium thiosulfate* solution (4 × 100 mL), saturated *sodium hydrogen carbonate* solution (2 × 100 mL) and saturated *sodium chloride* solution (100 mL), dried over anhydrous *magnesium sulfate*, and filtered. *Ethyl acetate* is removed by rotary evaporation and the residue is distilled to give 30–32 g (54–57%) of *2,2-dimethylcyclohexane-1,3-dione* bp 92–97°C (4 mm) as a glassy solid (Note 5) and (Note 6).

B. *(S)-(+)-3-Hydroxy-2,2-dimethylcyclohexanone*. In a 5-L, three-necked, round-bottomed flask equipped with a mechanical stirrer, a thermometer, and an air-reflux condenser are placed 3 L of tap water and 450 g of *sucrose* (Note 7). The mixture is stirred at 30°C, and 200 g of dry baker's yeast (Note 8) is added with stirring, whereupon brisk fermentation takes place (Note 2). This fermenting mixture is stirred at 30°C for 10 min and a solution of 15 g (0.107 mol) of *2,2-dimethylcyclohexane-1,3-dione* in 95% *ethanol* (30 mL) and 0.2% Triton X-100 (120 mL) is added portionwise (Note 9). The mixture is stirred at 30°C for 40–48 hr (Note 10). *Diethyl ether* (about 200 mL) and Celite (about 50 g) are then added to the mixture and it is left to stand overnight. After the flocculated yeast cells are precipitated, the mixture is filtered through a pad of Celite (Note 11). The filter cake is washed with *ethyl acetate* (2 × 100 mL) and the combined filtrate and washings are saturated with *sodium chloride* and extracted 4 times with 100 mL of *ethyl acetate*. The combined *ethyl acetate* extracts are washed with saturated *sodium hydrogen carbonate* solution (200 mL) and saturated *sodium chloride* solution (200 mL), dried over anhydrous *magnesium sulfate*, and filtered. *Ethyl acetate* is removed by rotary evaporation and the

residue (about 20 g) is chromatographed over 200 g of silica gel (Fuji Davison 820 MH gel) (Note 12). Elution with hexane–ethyl acetate (10 : 1–5 : 1) gives 5–6 g of recovered starting material. Further elution with hexane–ethyl acetate (5 : 1–1 : 2) gives 7.7–7.9 g (47–52%) of (*S*)-3-hydroxy-2,2-dimethylcyclohexanone. An analytical sample can be obtained by distillation, bp 85–87°C at 3.7 mm, $[\alpha]_D^{21} + 23.0^\circ$ (CHCl₃, *c* 2.0) (Note 13), (Note 14), (Note 15).


2. Notes

1. The submitters used Triton B purchased from Tokyo Kasei Co., Ltd., whereas the checkers used material purchased from Aldrich Chemical Company, Inc. A rigorously moisture-free condition is not necessary. Even with ordinary methanol, the same result was obtained.
2. No temperature control is required because of the nonexothermic nature of this reaction.
3. The checkers found (GLC analysis using a 12.5-m, 5% methyl silicone capillary column) that the reaction was complete within 4–6 hr.
4. To ensure the complete decomposition of the O-alkylated product, this amount of hydrochloric acid is used. A smaller amount may result in incomplete decomposition of the by-product.
5. This material is sufficiently pure for use in the next step. Analysis by ¹³C NMR indicates that 2–4% of an unknown impurity is present. Recrystallization from hexane–methylene chloride gives pure product melting at 37–38°C.
6. The spectra are as follows: ¹H NMR (250 MHz, CDCl₃) δ : 1.29 (s, 6 H), 1.93 (5 lines, 2 H, *J* = 6.5), 2.67 (t, 4 H, *J* = 6.9); ¹³C NMR (76 MHz, CDCl₃) δ : 18.1, 22.3, 37.4, 61.8, 210.6.
7. Commercially available sucrose is used. The checkers employed deionized water.
8. The submitters used yeast purchased from the Oriental Yeast Co., Ltd., whereas the checkers used Fleischman's Dry Active Yeast.
9. The submitters used Triton X-100 purchased from Tokyo Kasei Co., Ltd., whereas the checkers used material purchased from Rohm & Haas Co.
10. To keep the temperature at 30°C, the flask is gently heated on a large water bath.
11. The checkers found that the use of coarse filter paper and a Büchner funnel was preferable to a sintered glass funnel.
12. The checkers found that the chromatography was best accomplished using 450 g of silica gel (E. Merck).
13. The spectral properties of (*S*)-(+)-3-hydroxy-2,2-dimethylcyclohexanone are as follows: IR ν_{max} (film) cm⁻¹: 3470 (s), 1705 (s), 1120 (m), 1055 (s), 985 (s), 965 (m); ¹H NMR (250 MHz, CDCl₃) δ : 1.11 (s, 3 H), 1.15 (s, 3 H), 1.60–1.71 (m, 1 H), 1.76–1.86 (m, 1 H), 1.96–2.05 (m, 2 H), 2.16 (br s, 1 H), 2.35–2.45 (m, 2 H), 3.69 (dd, 1 H, *J* = 7.6, 2.9); ¹³C NMR (76 MHz, CDCl₃) δ : 19.7, 20.7, 22.9, 29.0, 37.3, 51.3, 77.8, 215.3.
14. The optical purity of (*S*)-(+)-3-hydroxy-2,2-dimethylcyclohexanone can be determined by HPLC analysis. The (*S*)- α -methoxy- α -trifluoromethylphenylacetate (MTPA ester) is prepared according to the reported procedure:³ HPLC analysis (Column, Nucleosil® 50-5, 25 cm × 4.6 mm; eluant, hexane : THF = 30 : 1, 1.03 mL/min; detected at UV 256 nm) retention time 35.6 min (98.0–99.4%) and 29.6 min (0.6–(2.0%). Therefore, the optical purity is determined to be 96.0–98.8% ee.
15. Analysis of the MTPA ester of this product by 250 MHz ¹H NMR and capillary GLC (12.5 m, 5% methyl silicone column) failed to detect any more of the minor diastereomer than would have been expected from the purity (98% ee) of the MTPA-Cl employed.

3. Discussion

Microbial reduction of prochiral cyclopentane- and cyclohexane-1,3-diones was extensively studied during the 1960s in connection with steroid total synthesis.⁴ Kieslich, Djerassi, and their coworkers reported the reduction of 2,2-dimethylcyclohexane-1,3-dione with *Kloeckera magna* ATCC 20109, and obtained (*S*)-3-hydroxy-2,2-dimethyl-cyclohexanone.⁵ We found that the reduction of the 1,3-diketone can also be effected with conventional baker's yeast, and secured the hydroxy ketone of 98–99% ee as determined by an HPLC analysis of the corresponding (*S*)- α -methoxy- α -trifluoromethyl-phenylacetate (MTPA ester).^{6,7} (*S*)-3-Hydroxy-2,2-dimethylcyclohexanone has been proved to be a versatile chiral nonracemic building block in terpene synthesis as shown in Figure 1.

Figure 1. Natural products synthesized from (*S*)-3-hydroxy-2,2-dimethylcyclohexanone

89101112131415

References and Notes

1. Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo 113, Japan.
2. Mekler, A. B.; Ramachandran, S.; Swaminathan, S.; Newman, M. S. *Org. Synth., Coll. Vol. V* **1973**, 743, 3.
3. Dale, J. A.; Mosher, H. S. *J. Am. Chem. Soc.* **1973**, 95, 512.
4. Kieslich, K. "Microbial Transformations of Non-Steroid Cyclic Compounds;" Georg Thieme; Stuttgart, 1976, pp. 28–31.
5. Lu, Y.; Barth, G.; Kieslich, K.; Strong, P. D.; Duax, W. L.; Djerassi, C. *J. Org. Chem.* **1983**, 48, 4549.
6. Mori, K.; Mori, H. *Tetrahedron* **1985**, 41, 5487.
7. Yanai, M.; Sugai, T.; Mori, K. *Agric. Biol. Chem.* **1985**, 49, 2373.
8. Mori, K.; Watanabe, H. *Tetrahedron* **1986**, 42, 273.
9. Mori, K.; Nakazono, Y. *Tetrahedron* **1986**, 42, 283.
10. Mori, K.; Mori, H.; Yanai, M. *Tetrahedron* **1986**, 42, 291.
11. Mori, K.; Tamura, H. *Tetrahedron* **1986**, 42, 2643.
12. Sugai, T.; Tojo, H.; Mori, K. *Agric. Biol. Chem.* **1986**, 50, 3127.
13. Mori, K.; Mori, H. *Tetrahedron* **1986**, 42, 5531.
14. Mori, K.; Mori, H. *Tetrahedron* **1987**, 43, 4097.
15. Mori, K.; Komatsu, M. *Liebigs Ann. Chem.* **1988**, 107.

Appendix Chemical Abstracts Nomenclature (Collective Index Number);

(Registry Number)

silica gel

Triton B

Triton X-100

ethanol (64-17-5)

hydrochloric acid (7647-01-0)

ethyl acetate (141-78-6)

methanol (67-56-1)

diethyl ether (60-29-7)

sodium hydrogen carbonate (144-55-8)

sodium chloride (7647-14-5)

sodium thiosulfate (7772-98-7)

sucrose

Methyl iodide (74-88-4)

methylene chloride (75-09-2)

magnesium sulfate (7487-88-9)

THF (109-99-9)

hexane (110-54-3)

2-methylcyclohexane-1,3-dione (1193-55-1)

2,2-Dimethylcyclohexane-1,3-dione (562-13-0)

(S)-(+)-3-Hydroxy-2,2-dimethylcyclohexanone,
Cyclohexanone, 3-hydroxy-2,2-dimethyl-, (S)-,
(S)-3-hydroxy-2,2-dimethylcyclohexanone,
(S)-3-hydroxy-2,2-dimethyl-cyclohexanone (87655-21-8)

(S)- α -methoxy- α -trifluoromethylphenylacetate,
(S)- α -methoxy- α trifluoromethyl-phenylacetate