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Procedure (Note 1) 
 

A. tert-Butyl 5-methyl-3,6-dihydro-2H-1,2-oxazine-2-carboxylate and tert-
butyl 4-methyl-3,6-dihydro-2H-1,2-oxazine-2-carboxylate (2). A single-necked, 2 L, 
29/32 round-bottomed flask is charged with a 4-cm by 1.5-cm Teflon-coated 
football-shaped stir bar and charged with methylene chloride (750 mL) (Note 
2) under air, measured using a 1 L graduated cylinder and introduced into the 
reaction vessel through a 350 mL plastic funnel.  The funnel is removed from 
the flask.  Stirring is initiated (500 rpm), and N-Boc-hydroxylamine (1, 25.0 g, 
0.188 mol, 1.3 equiv) (Note 3) is added.  After stirring at room temperature 
(Note 4) for 5 min, isoprene (14.1 mL, 0.141 mol, 1.0 equiv) (Note 5) is added 
by a 24 mL plastic syringe to the round-bottomed flask over the course of 
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30 sec. Next, the flask is submerged to just above the solvent line in a 0 °C 
ice/water bath (Note 6) and stirring is continued for 10 min prior to addition 
of (diacetoxyiodo)benzene (60.6 g, 0.188 mol, 1.3 equiv), (Note 7) which is 
introduced over the course of 15 sec.  The flask is capped with a 29/32 rubber 
septum.  To prevent over-pressurization, a 5.5-cm, 18-gauge disposable needle 
is then inserted through the septum (Figure 1A).  The reaction is stirred at 
500 rpm for 30 min at 0 °C (Note 8).  After the septum is removed, saturated 
aqueous NaHCO3 (150 mL) (Note 9) is added to the reaction solution at 0 °C 
over 30 sec.  After the ice bath is removed, the reaction mixture is stirred at 
500 rpm for 10 min at room temperature (Figure 1B).  After the stirring is 
stopped, the stir bar is removed, and the resulting mixture is transferred to a 
2 L separatory funnel. The reaction vessel is rinsed with methylene chloride 
(2 × 25 mL), and the resulting methylene chloride solution is transferred to the 
2 L separatory funnel. Additional saturated aqueous NaHCO3 (150 mL) is 
added to the separatory funnel, which is then capped, shaken, and vented 
until the evolution of gas stops.  The two layers are separated, and the aqueous 
layer is extracted with methylene chloride (3 × 75 mL).  The organic layers are 
combined and washed with saturated brine (200 mL) (Note 10).  The 
separatory funnel is shaken until the evolution of gas stops and the layers are 
separated.  The organic layer is transferred into a 2 L Erlenmeyer flask and 
dried with Na2SO4  (100 g) (Note 11).  After drying for 15 min, the mixture is 
filtered into a 2 L round-bottomed flask using a 350 mL plastic funnel plugged 
with cotton, and the filtrate is concentrated using a rotary evaporator (Note 12) 
(450 mmHg to 20 mmHg, 80 rpm, water bath temperature 38 °C).  The crude 
product is orange/yellow oil weighing 70.4 g (Figure 1C). 
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Figure 1. Nitroso Diels–Alder reaction setup and 
purification A) Reaction cooled to 0 °C; B) Reaction mixture 
after quenching with saturated aqueous NaHCO3; C) The 
crude orange/yellow oil; D) Compound 2 after flash column 
chromatography (photos provided by checkers) 

 
The crude oil is purified by flash column chromatography on silica gel 

using hexanes and ethyl acetate as eluents (Notes 13 and 14).  This produced 
compound 2 (11.5 g, 41% yield, 97.2% purity, a 1.1 : 1 regioisomeric mixture) 
(Notes 15 and 16) as a colorless oil (Figure 1D). 

B. tert-Butyl 3-methyl-1H-pyrrole-1-carboxylate (3).  A three-necked, 1 L 
round-bottom flask (main neck: 29/32 joint, side necks: 15/25 joint) (Flask A) 
is equipped with a 4-cm by 1.5-cm Teflon-coated football-shaped stir bar.  Two 
additional three-necked, 500 mL round-bottomed flasks (main neck: 29/32 
joint, side necks: 15/25 joint) (Flasks B and C) are equipped with  3-cm by 1.5-
cm Teflon-coated football-shaped stir bars.  One side neck of each of Flasks A, 
B, and C is topped with a 15/25 three-way stop cock connected to an 
argon/vacuum line.  The main neck and the other side neck of each of Flasks 
A, B, and C are then fitted with 29/32 and 15/25 rubber septa, respectively.  
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All joints are sealed with grease and Teflon tape.  Flasks A, B, and C are dried 
under vacuum (1.5 mmHg) by heating with a heat gun for 5 min, allowed to 
cool to room temperature, and backfilled with argon.  After the 29/32 septum 
is removed from the main neck of Flask A, potassium tert-butoxide (11.3 g, 
0.101 mol, 2.0 equiv) (Note 17) is added to Flask A through the main neck.  
After the 29/32 septum is removed from the main neck of Flask C, compound 
2 (10.0 g, 50.2 mmol, 1.0 equiv) is added to Flask C through the main neck.  
Then, the removed 29/32 rubber septa are reattached to the main necks of 
Flasks A and C and sealed with Teflon tape.  Flasks A, B, and C are evacuated 
under high vacuum (1.5 mmHg) for 5 min and backfilled with argon three 
times.  Argon/vacuum lines are removed from three-way stop cocks on Flasks 
A, B, and C, each of which is then connected to a pair of argon inlet and outlet, 
respectively (Figure 2).  Throughout the reaction before the addition of 2 M 
aqueous HCl, the argon atmosphere is maintained under continuous argon 
flow. 

 

 
Figure 2. Anion fragmentation reaction setup of Flask A under continuous 

argon flow (photo provided by checkers) 
 

Flask B is charged with diethyl ether (Note 18) in two portions  
(60 mL + 50 mL) by a 60 mL plastic syringe through the 29/32 septum.  
Diisopropylamine (15.0 mL, 0.107 mol, 2.1 equiv) (Note 19) is then added to 
Flask B by a 24 mL plastic syringe through the same septum.  The solution in 



 

Org. Synth. 2023, 100, 61–83               DOI: 10.15227/orgsyn.100.0061 
 

65 

Flask B is then cooled to −78 °C using a dry ice/methanol bath (Note 20).  
Stirring is initiated and maintained at 500 rpm for 30 min after which time n-
butyllithium (37.2 mL, 100 mmol, 2.0 equiv) (Note 21) is added dropwise over 
5 min by a 60 mL plastic syringe through the 29/32 rubber septum.  After the 
reaction mixture is stirred at 500 rpm for 30 min at −78 °C, the bath is changed 
to a 0 °C ice/water bath (Note 6) (Figure 3A).  After the reaction mixture is 
stirred at 500 rpm for 30 min at 0 °C, the bath is changed to the −78 °C dry 
ice/methanol bath.  The reaction mixture is stirred at 500 rpm for 30 min at 
−78 °C.  Flask A containing potassium tert-butoxide is charged with diethyl 
ether in two portions (60 mL + 50 mL) by a 60 mL plastic syringe through the 
29/32 septum.  The stirred solution in Flask A (500 rpm) is cooled to −78 °C 
using a dry ice/methanol bath for 30 min (Note 22).  Then, the reaction mixture 
in Flask B is slowly added to Flask A at −78 °C via a 50-cm, 10-gauge cannula 
through the 15/25 rubber septa (ca. 25 mL/min) (Figure 3B).  After the cannula 
is removed, the reaction vessel (Flask A) is kept at −78 °C and stirred at 
500 rpm for 1 h (Figure 3C).   

During this hour, Flask C containing compound 2 is charged with diethyl 
ether in two portions (60 mL + 50 mL) by a 60 mL plastic syringe through the 
29/32 septum.  The stirred solution in Flask C (500 rpm) is cooled to −78 °C 
using a dry ice/methanol bath for 30 min (Note 20).  The reaction mixture in 
Flask C is then slowly transferred (ca. 22 mL/min) into the solution of LDA/t-
BuOK (LIDAKOR) in Flask A at −78 °C via a 50-cm, 10-gauge cannula through 
the 15/25 rubber septa. (During the transfer, the color of the solution in Flask 
A gradually changes from pale yellow to orange (Figure 3D).  The cannula is 
removed, and then the reaction mixture in Flask A is stirred at 500 rpm for 
30 min at −78 °C, after which the color turns dark red (Note 23) (Figure 3E).  
Flask A is then removed from the −78 °C bath and allowed to warm for 30 min 
at room temperature. 
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Figure 3. A) Preparation of LDA at 0 °C; B) Cannulating a solution 
of LDA into t-BuOK solution; C) Appearance of the LDA/t-BuOK 
(LIDAKOR) solution; D) Cannulating a solution of compound 2 
into LIDAKOR; E) Dark red color of compound 2 treated with 
LIDAKOR; F) Addition of 2M aqueous HCl into the reaction 
mixture G) The vibrant yellow biphasic mixture; H) The crude dark 
brawn oil (photos provided by checkers) 
 
After this time, the three-way stop cock and the rubber septa are removed.  

Then, 2 M aqueous HCl (200 mL) (Note 24) is dispensed from a 500 mL 
graduated cylinder and added to the reaction mixture through a 100 mL 
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plastic funnel topped on the main neck at room temperature (Figure 3F).  After 
the removal of the plastic funnel from the main neck, the resultant biphasic 
mixture is stirred at 500 rpm for 30 min, during which the color changes from 
red to orange and finally to a vibrant yellow (Note 25) (Figure 3G).  The stir 
bar is removed, and the resulting reaction mixture is transferred to a 1 L 
separatory funnel.  After the biphasic mixture is separated, the acidic aqueous 
layer is collected in a 1 L, 45/50 Erlenmeyer flask, and the organic layer is then 
washed again with 2 M aqueous HCl (200 mL) by shaking vigorously until 
venting results in no further gas evolution.  The layers are separated, and the 
aqueous layers are combined.  After the organic layer is collected in a separate 
1 L, 45/50 Erlenmeyer flask, the combined aqueous layers are returned to the 
separatory funnel and extracted with diethyl ether (3 × 50 mL).  All organic 
layers are combined, returned to the separatory funnel, and washed with 
saturated brine (200 mL) (Note 10) before drying with Na2SO4 (100 g) (Note 
11).  After 10 min at room temperature, the drying agent is removed using a 
350 mL plastic funnel plugged with cotton, and the filtrate is transferred to a 
2 L, 29/32 round-bottomed flask.  The flask is placed on the rotary evaporator 
(Note 12) and the solvent is removed (580 mmHg to 20 mmHg, 80 rpm, water 
bath temperature 38 °C) to give 3 as a dark brown oil (10.5 g crude) 
(Figure 3H). 

The crude product 3 is purified by flash column chromatography on silica 
gel using hexanes and ethyl acetate as eluents (Notes 13 and 26).  This 
provided compound 3 (2.87 g, 32% yield, 98.9% purity) (Notes 27 and 28) as a 
clear-yellow oil (Figure 4). 

 

 
Figure 4. Compound 3 after flash column chromatography 

(photo provided by checkers) 
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Notes 
 
1. Prior to performing each reaction, a thorough hazard analysis and risk 

assessment should be carried out with regard to each chemical substance 
and experimental operation on the scale planned and in the context of the 
laboratory where the procedures will be carried out. Guidelines for 
carrying out risk assessments and for analyzing the hazards associated 
with chemicals can be found in references such as Chapter 4 of “Prudent 
Practices in the Laboratory" (The National Academies Press, Washington, 
D.C., 2011; the full text can be accessed free of charge at 
https://www.nap.edu/catalog/12654/prudent-practices-in-the-
laboratory-handling-and-management-of-chemical. See also “Identifying 
and Evaluating Hazards in Research Laboratories” (American Chemical 
Society, 2015) which is available via the associated website “Hazard 
Assessment in Research Laboratories” at 
https://www.acs.org/content/acs/en/about/governance/committees/
chemicalsafety/hazard-assessment.html. In the case of this procedure, the 
risk assessment should include (but not necessarily be limited to) an 
evaluation of the potential hazards associated with N-Boc-hydroxylamine, 
isoprene, (diacetoxyiodo)benzene, dichloromethane, diisopropyl amine, 
n-butyl lithium, potassium tert-butoxide, diethyl ether, methanol, dry ice, 
hydrochloric acid, sodium bicarbonate, sodium sulfate, hexanes, ethyl 
acetate, silica gel, as well as the proper procedures for running reactions 
at cryogenic temperatures. 

2. Methylene chloride (>99.9%) used as solvent was obtained from Fisher 
Chemical and used as received (submitters).  Methylene chloride (>99.5%) 
was obtained from FUJIFILM Wako Pure Chemical Corporation and 
purified by Glass Contour solvent dispensing system (Nikko Hansen & 
Co., Ltd.) (checkers). 

3. N-Boc-hydroxylamine (99.8%) was obtained from Chem-Impex Int’L Inc. 
and used as received (submitters).  N-Boc-hydroxylamine (>97.0%) was 
obtained from Tokyo Chemical Industry Co., Ltd. and used as received 
(checkers). 

4. The term “room temperature” used throughout this manuscript refers to 
a temperature between 22 °C to 25 °C. 

5. Isoprene (99%, stabilized with p-tert-butylcatechol) was obtained from 
Sigma-Aldrich and used as received (submitters and checkers). 

https://www.acs.org/about/governance/committees/chemical-safety.html
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6. In a 2.5 L vacuum jacketed Dewar, approximately 400 g of ice and 600 mL 
of tap water were used to set the bath temperature at 0 °C.  All 
temperatures reported in the procedure are bath temperatures. 

7. (Diacetoxyiodo)benzene (98%) was obtained from Oakwood Chemical 
and used as received (submitters).  (Diacetoxyiodo)benzene (>98.0 %) was 
obtained from FUJIFILM Wako Pure Chemical Corporation and used as 
received (checkers). 

8. TLC analysis of the reaction mixture is shown below (Figure 5).  Four spots 
on the silica gel plate (TLC Silica gel 60 F254, obtained from Merck KGaA) 
can be visualized by I2/SiO2 stain.  The TLC plate needs to be fully dipped 
in a dark orange mixture of I2 (100 mg, obtained from Nacalai Tesque, Inc., 
used after ground by a mortar and pestle) and SiO2 (10 g) (Note 13) for 
5 min for the purpose of visualizing the spots.  The desired product 2 
appears as an orange spot, the 2nd from the top, and the Rf value of 2 in 
hexanes/ethyl acetate (5/1, v/v) is 0.40. 
 

 
Figure 5. TLC analysis of the reaction mixture (TM = Target Material, 

R = Reaction mixture)  
(photo provided by checkers) 

 
9. Sodium bicarbonate (reagent grade) was obtained from Ward’s Science 

and used as received (submitters).  Sodium bicarbonate (>99.5%) was 
obtained from Nacalai Tesque, Inc. and used as received (checkers). 

10. Sodium chloride (>99.5%) was purchased from Nacalai Tesque, Inc. and 
used as received (checkers). 
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11. Sodium sulfate (>99%) was obtained from Fisher Chemical and used as 
received (submitters).  Anhydrous sodium sulfate (>99.0%) was obtained 
from Nacalai Tesque, Inc. and used as received (checkers). 

12. The rotary evaporator is a Heidolph Hei-VAP Value (submitters).  The 
rotary evaporator was obtained from Tokyo Rikakikai Co., Ltd. (checkers). 

13. The column was obtained from O’Brien’s Scientific Glassware.  The sand 
(sea washed) was obtained from Fisher Chemical and used as received.  
The silica gel (0.040-0.063 mm, 230-400 mesh ASTM) was obtained from 
Millipore and was used as received.  Ethyl acetate (>98.5%) and hexanes 
(>98.5%) were obtained from Fisher Chemical and used as received. 
(submitters). 
The column was obtained from Sansyo Co., Ltd.  The sea sand was 
obtained from Nacalai Tesque, Inc. and used as received.  The silica gel 
(Silica gel 60 N, 0.040-0.050 mm, spherical and neutral) was obtained from 
Kanto Chemical Co., Inc. and was used as received.  Ethyl acetate (>99.0%) 
and hexanes (>96.0%) were obtained from Kanto Chemical Co., Inc. and 
used as received (checkers). 

14. Flash column chromatography is performed under compressed air.  A 14-
cm by 50-cm flash chromatography column with no solvent bulb is fitted 
with a cotton plug. A 2 cm bed of sand is added and the column is wet 
packed with 700 g of silica gel in hexanes (1.0 L).  Sea sand with 3 cm 
minimum height is added to the top of the column, then the crude product 
is loaded onto the column as a neat oil.  Fraction collection is then started 
using 500 mL glass bottles to collect the eluent.  Elution is continued with 
1500 mL of hexanes/ethyl acetate (1/0, v/v), 1500 mL of hexanes/ethyl 
acetate (30/1, v/v), 4500 mL of hexanes/ethyl acetate (20/1, v/v), and 
then 2500 mL of hexanes/ethyl acetate (10/1, v/v).  As illustrated in 
Figure 6, the fractions containing the product (2) are identified as fractions 
No. 10 through No. 18 by TLC (Rf of 0.40, hexanes/ethyl acetate = 5/1 
(v/v), visualized by I2/SiO2 stain).  These fractions are combined, 
concentrated using a rotary evaporator (Note 12) (180 mmHg to 20 mmHg, 
80 rpm, water bath temperature 38 °C), and then placed under high 
vacuum (1.5 mmHg, room temperature) for 1 h to remove residual solvent. 
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Figure 6. TLC analysis of column chromatography 

(photo provided by checkers) 
 

15. The identity of a 1.1 : 1 regioisomeric mixture of compound 2 was 
established with the following characterization data. 1H NMR (400 MHz, 
CDCl3) δ: 1.497 (s, 0.52 × 9H), 1.503 (s, 0.48 × 9H), 1.66 (s, 0.52 × 3H), 1.73 (s, 
0.48 × 3H), 3.94 (s, 0.48 × 2H), 4.03 (s, 0.52 × 2H), 4.26 (s, 0.52 × 2H), 4.36 (s, 
0.48 × 2H), 5.52 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 18.5 (0.48 × 1C), 
19.9 (0.52 × 1C), 28.4 (0.52 × 3C), 28.5 (0.48 × 3C), 44.9 (0.52 × C), 48.7 (0.48 × 
C), 68.2 (0.48 × C), 71.3 (0.52 × C), 81.7 (1C), 116.7 (0.52 × C), 118.2 (0.48 × 
C), 130.5 (0.48 × C), 131.7 (0.52 × C), 155.1 (0.48 × C), 155.2 (0.52 × C); HRMS 
(ESI+) calculated for C10H17NNaO3 [M+Na]+ 222.1101, found 222.1101; IR 
(KBr film): 2977 (w), 2932 (w), 2853 (w), 1727 (m), 1704 (s), 1476 (w), 1443 
(w), 1390 (m), 1367 (s), 1240 (m), 1165 (s), 1098 (m), 1059 (w), 1040 (w), 1013 
(w), 958 (w), 904 (w), 857 (w), 832 (w), 762 (w), 716 (w), 555 (w), 517 (w), 
443 (w) cm-1; TLC: Rf = 0.40 in hexanes/ethyl acetate (5/1, v/v). The purity 
of compound 2 was calculated to be >97% by qNMR with the relaxation 
delay set to 30 seconds using 11.0 mg of 1,3,5-trimethoxybenzene 
(FUJIFILM Wako Pure Chemical Corporation, >99.0%, used as received) 
and 11.8 mg of compound 2.   

16. When the reaction was carried out on a 70.5 mmol scale, 6.09 g (43%) of 
compound 2 was obtained with 98.8% purity. 

17. Potassium tert-butoxide (≥98%) was obtained from Sigma-Aldrich and 
used as received (submitters and checkers). Two equivalents of the 
LIDAKOR base are used due to incomplete conversion of starting material 
when only one equivalent is used. 

18. Diethyl ether (>99%) was obtained from Fisher Chemical and was dried 
using a solvent purification system manufactured by SG Water U.S.A., 
LLC (submitters).  Diethyl ether (>99.5%) was obtained from FUJIFILM 
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Wako Pure Chemical Corporation and purified by Glass Contour solvent 
dispensing system (Nikko Hansen & Co., Ltd.) (checkers). 

19. Diisopropylamine (99%) was obtained from Oakwood Chemical and was 
dried over calcium hydride and freshly distilled (submitters).  
Diisopropylamine (>99.0%) was obtained from Tokyo Chemical Industry 
Co., Ltd. and was dried over calcium hydride and freshly distilled 
(checkers). 

20. In a 1 L vacuum jacketed Dewar, approximately 500 g of dry ice and 
250 mL of methanol were used to set the bath temperature at −78 °C. 

21. n-Butyllithium (2.5 M in hexanes) was obtained from Sigma-Aldrich and 
used as received (submitters).  n-Butyllithium (2.69 M in n-hexanes) was 
obtained from Kanto Chemical Co., Inc. and used as received (checkers). 

22. In a 2 L vacuum jacketed Dewar, approximately 750 g of dry ice and 
400 mL of methanol were used to set the bath temperature at −78 °C. 

23. TLC analysis of the reaction mixture using hexanes/ethyl acetate (5/1, 
v/v) as eluent is shown below (Figure 7).  The progress of the reaction can 
be followed by observing the loss of starting material 2, and the formation 
of intermediates 8 (see Discussion section, Scheme 3).  These spots on the 
silica gel plate (TLC Silica gel 60 F254, obtained from Merck KGaA) can be 
visualized by I2/SiO2 stain. 
 

 
Figure 7. TLC analysis of the reaction mixture (SM = Start Material, R 

= Reaction mixture) (photo provided by Checkers) 
 

24. Hydrochloric acid (2.5 L, 37% (12 M) aqueous solution) was obtained from 
Fisher Chemical and diluted to a concentration of 2 M using DI water 
(submitters).  Hydrochloric acid (4.0 L, 37% (12 M) aqueous solution) was 
obtained from FUJIFILM Wako Pure Chemical Corporation and diluted 
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to a concentration of 2 M using pure water (FUJIFILM Wako Pure 
Chemical Corporation) (checkers). 

25. TLC analysis of the reaction mixture is shown below (Figure 8).  The Rf 
value of the desired product 3 in hexanes/ethyl acetate (5/1, v/v) is 0.60.  
The spot of compound 3 on the silica gel plate (TLC Silica gel 60 F254, 
obtained from Merck KGaA) can be visualized by UV light (254 nm) and 
I2/SiO2 stain. 

 

 
Figure 8. TLC analysis of the reaction mixture (TM = Target Material, 

R = Reaction mixture) (photos provided by checkers) 
 

26. Flash column chromatography is performed under compressed air.  A 8-
cm by 32-cm flash chromatography column with no solvent bulb is fitted 
with a cotton plug and a 3 cm bed of sand is added. The column is then 
wet packed with 500 g of silica gel in hexanes (800 mL) and sea sand (3 cm 
height) is added to the top of the column.  Then, the crude product is 
loaded onto the column as a neat oil.  Fraction collection is then started 
using 500 mL glass bottles.  Elution is continued with 2500 mL of 
hexanes/ethyl acetate (1/0, v/v), 2500 mL of hexanes/ethyl acetate (50/1, 
v/v), 2500 mL of hexanes/ethyl acetate (35/1, v/v), and then 5000 mL of 
hexanes/ethyl acetate (25/1, v/v).  The location of product 3 as 
determined by TLC (Rf of 0.60, hexanes/ethyl acetate = 5/1 (v/v), 
visualized by UV light (254 nm)) is determined to be fractions No.12 
through No. 16 (Figure 9).  These fractions are combined, concentrated 
using a rotary evaporator (Note 12) (180 mmHg to 20 mmHg, 80 rpm, 
water bath temperature 38 °C), and dried on a high vacuum (1.5 mmHg, 
room temperature) for 1 h. 
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Figure 9: TLC analysis of column chromatography 

(photo provided by checkers) 
 

27. The identity of compound 3 was established with the following 
characterization data. 1H NMR (400 MHz, CDCl3) δ: 1.58 (s, 9H), 2.06 (s, 
3H), 6.05 (s, 1H), 6.97 (s, 1H), 7.14 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 
12.0, 28.1 (3C), 83.2, 114.1, 117.3, 120.1, 122.1, 149.1; HRMS (ESI+) 
calculated for C10H15NNaO2 [M+Na]+ 204.0995, found 204.0996; IR 
(KBr film): 2979 (w), 2930 (w), 1741 (s), 1487 (w), 1456 (w), 1398 (s), 1368 
(m), 1344 (s), 1251 (s), 1164 (s), 1120 (m), 1069 (m), 1035 (w), 997 (w), 971 
(s), 853 (w), 826 (w), 773 (s), 708 (w), 616 (w), 586 (w), 546 (w), 526 (w), 481 
(w), 462 (w), 411 (w) cm-1; TLC: Rf = 0.60 in hexanes/ethyl acetate (5/1, 
v/v). The purity of compound 3 was calculated to be >98% by qNMR with 
the relaxation delay set to 30 seconds using 16.5 mg of 1,3,5-
trimethoxybenzene (FUJIFILM Wako Pure Chemical Corporation, 
≥99.0%, used as received) and 16.0 mg of compound 3.   

28. When the reaction was carried out on a 28.1 mmol scale, 1.73 g (34%) of 
compound 3 was obtained with 97.9% purity. 

 
 
Working with Hazardous Chemicals 
 

The procedures in Organic Syntheses are intended for use only by persons 
with proper training in experimental organic chemistry.  All hazardous 
materials should be handled using the standard procedures for work with 
chemicals described in references such as "Prudent Practices in the 
Laboratory" (The National Academies Press, Washington, D.C., 2011; the full 
text can be accessed free of charge at 
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http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no significant 
hazards are associated with the chemicals involved in that procedure.  Prior 
to performing a reaction, a thorough risk assessment should be carried out 
that includes a review of the potential hazards associated with each chemical 
and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards 
associated with chemicals can be found in Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as published 
and are conducted at one's own risk.  Organic Syntheses, Inc., its Editors, and 
its Board of Directors do not warrant or guarantee the safety of individuals 
using these procedures and hereby disclaim any liability for any injuries or 
damages claimed to have resulted from or related in any way to the 
procedures herein. 
 
 
Discussion 
 

The pyrrole moiety is found in a wide range of chemical compounds 
including, but not limited to, natural products, therapeutics, polymers, and 
dyes.2  Moreover, these privileged heterocycles can participate in a number of 
useful carbon-carbon bond-forming reactions, thereby rendering them 
valuable synthetic intermediates.3  In our recent synthetic study directed 
toward longeracemine (4),4 we identified N-Boc-3-methylpyrrole (3) as a 
potential starting material.  As illustrated in Scheme 1, we envisioned 
constructing the 2-azabicyclo[2.2.1] heptane framework of 4 through a SmI2-
mediated spirocyclization/rearrangement cascade initiated from an 
intermediate Diels–Alder adduct (6).  Although commercially available, the 
cost of 3-methylpyrrole ($800/g from Millipore Sigma) was prohibitive, 
particularly given its planned use in the early stages of what was certain to be 
a challenging synthetic endeavor.  
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Scheme 1. Retrosynthetic analysis of longeracemine and motivation for 
present study 

 
Turning instead to literature preparations, we noted that previous 

syntheses of 3 have taken many forms.  For example, Castagnolo and 
coworkers reported a one-step tandem enyne cross metathesis/cyclization to 
access various protected 3-methylpyrroles.5  Although efficient, the relatively 
high loading (5-10 mol%) of the Grubbs 2nd Generation catalyst rendered this 
approach cost-prohibitive.6  Lash also reported a robust synthesis of 2-
carboxy-4-methylpyrrole-starting from glycine ethyl ester, however the 
sequence is 4-steps followed by decarboxylation.7  Lancaster and VanderWerf 
have also reported a 4-step sequence involving condensation of aminoacetone 
with diethyl oxalacetate and subsequent hydrolysis and decarboxylation of 
the product, 2-carboxy-3-carbethoxy-4-methylpyrrole.8  After dismissing the 
above syntheses on the basis of cost, step-count, or practicality we came across 
an intriguing nitroso Diels–Alder approach reported by Kouklovsky.9  As 
described in Scheme 2, Kouklovsky’s sequence begins with in situ formation 
of the acyl nitroso dienophile derived from 1 via oxidation (e.g., NaIO4) in the 
presence of an appropriate diene such as isoprene.  This latter reaction results 
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in the formation of a regioisomeric mixture of dihydrooxazines (2), via [4+2] 
cycloaddition, which is then subjected to conditions suited for reductive N–O 
bond cleavage.  Derived alcohols 7 are oxidized to the corresponding 
carbonyls and advanced via cyclo-condensation and aromatization to furnish 
3.  Although we found the relative step- and cost-efficiency of this latter 
approach attractive, we thought it worthwhile to spend some time optimizing 
the sequence.  To this end, we first found phenyliodine diacetate (PIDA), in 
lieu of NaIO4 or Bu4NIO4, to be a preferred oxidant.  We next turned to 
exploring alternative methods for reductive N–O bond cleavage, so as to avoid 
using super-stoichiometric quantities of highly toxic Mo(CO)6.  In initial 
investigations, we established that single electron transfer agents, such as 
SmI2,10 were effective but gave inconsistent results and poor yields of 7.  
Further investigation into other methods eventually led to our exploration N–
O bond cleavage by simple treatment with strong base followed by addition 
of a reductant such as lithium aluminum hydride (LAH).  As shown in Scheme 
3, we reasoned that deprotonation at either allylic position could result in N–
O bond cleavage to form a corresponding anionic intermediate (8) which, 
upon subsequent reduction could give 7.  Interestingly, when exploring 
solvents for the reaction, we noted trace quantities of the desired product (3) 
were observed when Et2O was used instead of THF, presumably via ring-
closure of the amide anion, prior to the introduction of LAH, and eventual 
aromatization upon work-up.  Given that this latter transformation preserved 
the oxidation level of the cycloadduct, thereby obviating the subsequent 
reduction/oxidation sequence, we performed an extensive optimization 
study.  To this end, screening of over 20 different bases eventually revealed 
that exposing the mixture of dihydrooxazines (2) to a solution of LDA/t-BuOK 
(LIDAKOR11) in Et2O at −78 °C resulted in reasonable and consistent yields of 
3.   
 We have detailed the development of a two-step synthesis of N-Boc-3-
methylpyrrole (3).  The synthesis proceeds through a Diels–Alder reaction 
between isoprene and the nitroso dienophile derived from 1 via oxidation 
with PIDA.  Treatment of the resulting regioisomeric mixture of 
dihydrooxazines 2 with LIDAKOR in Et2O at −78 °C furnishes 3.  The synthesis 
employs inexpensive and non-toxic reagents and is anticipated to expand the 
use of this privileged heterocycle through broadened access.    
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Scheme 3.  Advancing 2 by treatment with base 
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Appendix 

Chemical Abstracts Nomenclature (Registry Number) 
 

N-Boc-hydroxylamine: tert-Butyl N-hydroxycarbamate; (36016-38-3) 
Isoprene: (78-79-5) 

(Diacetoxyiodo)benzene: Iodobenzene diacetate (3240-34-4) 
Methylene chloride: Dichloromethane; (75-09-2) 

Diethyl ether: (60-29-7) 
Diisopropylamine: (108-18-9) 

n-Butyllithium: Butyllithium; (109-72-8) 
Potassium tert-butoxide: (865-47-4) 
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