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Procedure (Note 1) 

Diethyl (1-diazo-2-oxopropyl)phosphonate (1).  A 1-L, three-necked, round-
bottomed flask is equipped with a 125-mL pressure-equalizing addition 
funnel fitted with a rubber septum, an argon inlet adapter, a rubber septum, 
and a 50 x 20 mm Teflon-coated oval magnetic stir bar (Figure 1A) (Note 2).  
The flask is charged with NaH (1.04 g, 60% dispersion in mineral oil, 
26 mmol, 1.0 equiv) (Notes 3 and 4) and toluene (50 mL)  (Note 5).  The stirred 
suspension of NaH is cooled to 0 °C in an ice-water bath, and a solution of 
diethyl (2-oxopropyl)phosphonate (5.05 g, 26 mmol, 1.0 equiv) (Note 6) in 
toluene (40 mL)  is added dropwise via the addition funnel (Note 7) over 
15 min. A white precipitate appears immediately accompanied by bubbling, 
which subsides after several minutes (Figure 1B). Toluene (10 mL) is charged 
to the addition funnel and then added dropwise over 2 min to wash any 
residual phosphonate solution into the reaction flask. 
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Figure 1.  (A) Reaction assembly; (B) Reaction mixture after complete 

addition of diethyl (2-oxopropyl)phosphonate  
(photos provided by submitters) 

 
After 10 min, a solution of 4-acetamidobenzenesulfonyl azide (6.25 g, 

26 mmol, 1.0 equiv) in 40 mL of THF is added dropwise via the addition 
funnel over 15 min (Notes 9 and 10). Additional THF (10 mL) is then charged 
to the addition funnel and added dropwise over 2 min to wash any residual 
azide solution into the reaction mixture.  The ice-water bath is then removed 
and the reaction mixture is allowed to stir at room temperature for 20 h 
(Figures 2A-2C).  The resulting orange mixture is diluted with hexanes 
(25 mL) (Note 11) and filtered under vacuum (20 mmHg) through a pad of 
Celite (20 g) (Note 12) in a 500-mL sintered glass filter funnel into a 1-L 
Erlenmeyer flask (Figures 3A-3B). The material in the funnel is washed with 
methyl t-butyl ether (3 x 20 mL) (Note 13). The filtrate is next transferred to a 
1-L, one-necked, round-bottomed flask (Figure 3C) with the aid of three  
10-mL portions of methyl t-butyl ether and then concentrated by rotary 
evaporation (25 °C, 10 mmHg) to yield a pale-yellow oil (7.71 g) (Figure 4) 
(Note 14). 
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Figure 2.  (A) Reaction mixture before addition of 4-

acetamidobenzenesulfonyl azide; (B) Reaction mixture after addition of 4-
acetamidobenzenesulfonyl azide; (C) Reaction mixture after 20 h  

(photos provided by submitters) 
 

 
Figure 3.  (A) Filtration set up; (B) Precipitate obtained; (C) Filtrate 

containing crude reaction mixture in a 1-L round-bottomed flask  
(photos provided by submitters) 

 
This material is purified by chromatography on silica (Notes 15 and 16) 

using 1:1 ethyl acetate-hexanes (Notes 11 and 17).  Fractions containing the 
product are concentrated by rotary evaporation (25 °C, 10 mmHg).  Further 
drying under vacuum (25 °C, 0.05 mmHg) yields 5.17 g (90%) of 1 as a pale-
yellow oil (Figure 5B) (Notes 18, 19, 20, 21, and 22). 
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Figure 4.  Crude product (photo provided by submitters) 

 

  
Figure 5.  (A) Fractions containing product; (B) Diethyl (1-diazo-2-

oxopropyl)phosphonate (photos provided by submitters) 
 
 

Notes 
 
1. Prior to performing each reaction, a thorough hazard analysis and risk 

assessment should be carried out with regard to each chemical substance 
and experimental operation on the scale planned and in the context of the 
laboratory where the procedures will be carried out. Guidelines for 
carrying out risk assessments and for analyzing the hazards associated 
with chemicals can be found in references such as Chapter 4 of “Prudent 
Practices in the Laboratory" (The National Academies Press, Washington, 
D.C., 2011; the full text can be accessed free of charge at 
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https://www.nap.edu/catalog/12654/prudent-practices-in-the-
laboratory-handling-and-management-of-chemical. See also 
“Identifying and Evaluating Hazards in Research Laboratories” 
(American Chemical Society, 2015) which is available via the associated 
website “Hazard Assessment in Research Laboratories” at 
https://www.acs.org/content/acs/en/about/governance/committees
/chemicalsafety/hazard-assessment.html. In the case of this procedure, 
the risk assessment should include (but not necessarily be limited to) an 
evaluation of the potential hazards associated with sodium hydride, 
diethyl (2-oxopropyl)phosphonate, 4-acetamidobenzenesulfonyl azide, 
hexanes, tetrahydrofuran, methyl tert-butyl ether, ethyl acetate, toluene, 
and silica gel.  Differential Scanning Calorimetry (DSC) studies on the 
reagents and product were performed by the checkers, and the results 
are summarized in the appendix. 

2. Glassware was flame-dried under vacuum (0.1 mmHg), back-filled with 
argon while hot, and then maintained under the inert atmosphere during 
the course of the reaction. The checkers did not flame-dry the glassware 
and obtained similar results reported by the submitters. The relatively 
large stir bar is required for efficient stirring of the heterogeneous 
reaction mixture once the 4-acetamidobenzenesulfonyl amide byproduct 
precipitates from solution. Use of an overhead stirrer is a recommended 
alternative. 

3. Sodium hydride (60% by weight dispersion in mineral oil) was 
purchased from Oakwood Chemicals and used as received.  NaH was 
weighed into a 20-dram vial and then added to the reaction flask via a 
powder funnel.  The vial was rinsed with 10 mL of toluene. An additional 
40 mL of toluene was charged into the reaction flask by syringe resulting 
in a total of 50 mL of toluene. 

4. The use of impure samples of NaH (contaminated with NaOH formed 
during storage) led to reduced yields and product contaminated with 
DAMP (diethyl diazomethylphosphonate) presumably generated by 
cleavage of the product by hydroxide.  DAMP is not easily separated 
from the product by chromatography; the product (1) has Rf = 0.24 (silica 
gel, elution with 1:1 ethyl acetate-hexanes) while DAMP gives a slightly 
more polar overlapping spot. 

5. Anhydrous toluene (Sigma-Aldrich, 99.8%) was used without 
purification by the checkers.   

6. Diethyl 2-(oxopropyl)phosphonate (96%) was purchased from Sigma-
Aldrich and used it as received. 

https://www.acs.org/about/governance/committees/chemical-safety.html
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7. A solution of diethyl (2-oxopropyl)phosphonate in 30 mL of toluene was 
prepared in an oven-dried 50-mL, one-necked, round-bottomed flask and 
transferred to the addition funnel under argon via cannula (Figure 6). The 
flask was washed with two 5-mL portions of toluene which are 
cannulated into the addition funnel. 

 

 
Figure 6.  Cannulation set up (photo provided by submitters) 

 
8. 4-Acetamidobenzenesulfonyl azide (97%) was purchased from Oakwood 

Chemicals and used as received. 
9. Anhydrous tetrahydrofuran (>99% with 250 ppm BHT) was purchased 

from Sigma-Aldrich and used without purification. 
10. A solution of 4-acetamidobenzenesulfonyl azide in 30 mL of THF was 

prepared in an oven-dried 50-mL, one-necked, round-bottomed flask and 
transferred to the addition funnel under argon via cannula. The flask was 
washed with two 5-mL portions of THF which are cannulated into the 
addition funnel. 

11. Hexanes (mixture of isomers, >99.7%) was purchased from Sigma-
Aldrich and used as received. 
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12. Filtration through Celite is required to avoid the clogging observed when 
filtration of the sulfonamide byproduct is attempted using filter paper or 
a sintered glass funnel.  Celite was purchased from EMD Chemicals and 
used as received. 

13. Methyl tert-butyl ether (ACS Grade, >99.0%)) was purchased from 
Sigma-Aldrich and used as received. 

14. A second run on identical scale yielded 5.85 g of a pale, yellow oil. 
15. Purification was performed using automated column chromatography 

by the following procedure. The crude product was loaded onto a 40-mm 
diameter column packed with silica gel (40 g) compatible with 
CombiFlash Nextgen 100. Elution was carried out with 1:1 ethyl 
acetate/hexanes (Notes 11 and 17), and 18-mL fractions were collected in 
18 x 160 mm test tubes. (Figure 7)   
 

 
Figure 7.  Chromatogram from automated chromatographic separation 

using CombiFlash Nextgen 100 (photo provided by submitters) 
 
16. Alternatively, the crude product was loaded onto a 60-mm diameter 

column packed with silica gel (60 g, VWR “Industrial Grade” irregular 
silica gel 60A, 40-60 µm, 200-300 mesh) that was  prepared as a slurry in 
1:1 ethyl acetate-hexanes (Notes 11 and 17). Elution was performed with 
1:1 ethyl acetate-hexanes, and 20-mL fractions were collected in 
18 x 160 mm test tubes with the presence of the desired product 
monitored by TLC (Rf = 0.24 (1:1 ethyl acetate-hexanes; J.T. Baker silica 
gel plate). The product was collected in fractions 11-46, which were 
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combined in a 2-L round-bottomed flask (Figure 5A) and evaporated to 
dryness using a rotary evaporator (25 °C, 10 mmHg).  

17. Ethyl acetate (>99.7%) was purchased from Sigma-Aldrich and used as 
received. 

18. The submitters report that a slightly higher yield of 1 (5.32 g, 93%, 97% 
wt purity) can be obtained by increasing the amount of diethyl  
2-(oxopropyl)phosphonate to 1.1 equiv (5.55 g, 28.6 mmol). 

19. Diethyl (1-diazo-2-oxopropyl)phosphonate (1) has the following physical 
and spectroscopic properties: Rf = 0.24 (1:1 ethyl acetate-hexanes; J.T. 
Baker silica gel plate); 1H NMR (CDCl3, 400 MHz) δ: 4.31–4.10 (m, 4H), 
2.29 (s, 3H), 1.40 (td, 6H).; 13C NMR (CDCl3, 100 MHz) δ: 190.1 (d, 
J = 13.1 Hz), 65.6, 63.4 (d, J = 6.1 Hz), 27.2, 16.1 (d, J = 6.1 Hz).; 
31P NMR (CDCl3, 162 MHz) δ: 11.02; FTIR (neat) (cm-1) 2986, 2117, 1655, 
1260, 1006. The 13C resonance of the carbon bearing the diazo group, 
which appears at 65.6 ppm, is likely one peak of a doublet, with the other 
peak of the doublet  buried beneath the resonance at 63.4 ppm.  The 
submitters report the diazo carbon’s 13C resonance as 64.1 (d, J = 217 Hz); 
note, however, that some prior reports do not observe this resonance due 
to long carbon T1 relaxation times. 

20. Diethyl (1-diazo-2-oxopropyl)phosphonate (1) is stable to storage neat 
under air for at least 3 months. 

21. The purity of product (1) was determined by qNMR analysis on a sample 
prepared by dissolving 16.8 mg of 1 and 15.1 mg of 1,3,5-
trimethoxybenzene (99.9%) in 1.0 mL CDCl3 in a 1 dram vial.  The purity 
was determined to be 97wt%. 

22. A second run on identical scale provided 4.97 g (87%) of 1 as a pale-
yellow oil. 

 
 
Working with Hazardous Chemicals 
 

The procedures in Organic Syntheses are intended for use only by persons 
with proper training in experimental organic chemistry.  All hazardous 
materials should be handled using the standard procedures for work with 
chemicals described in references such as "Prudent Practices in the 
Laboratory" (The National Academies Press, Washington, D.C., 2011; the full 
text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
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should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no significant 
hazards are associated with the chemicals involved in that procedure.  Prior 
to performing a reaction, a thorough risk assessment should be carried out 
that includes a review of the potential hazards associated with each chemical 
and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards 
associated with chemicals can be found in Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as published 
and are conducted at one's own risk.  Organic Syntheses, Inc., its Editors, and 
its Board of Directors do not warrant or guarantee the safety of individuals 
using these procedures and hereby disclaim any liability for any injuries or 
damages claimed to have resulted from or related in any way to the 
procedures herein. 
 
 
Discussion 
 

Diethyl and dimethyl (1-diazo-2-oxopropyl)phosphonate 1 and 2 
(Scheme 1) are versatile building blocks for organic synthesis.2  These diazo 
compounds react via dipolar cycloaddition and other pathways to provide 
access to diverse classes of nitrogen heterocycles including phosphoryl-
substituted pyrazoles, triazolines, oxazoles, and thiazoles.2  In 1989, Ohira3 

showed that cleavage of the acetyl group can be effected under mildly basic 
conditions, providing a convenient method for the generation of the Seyferth-
Gilbert reagent (diazomethyl)phosphonate (“DAMP”)4 in situ for further 
transformations.  Colvin had previously shown that DAMP reacts with 
carbonyl compounds in the presence of base to form vinylidene carbenes 
which are useful synthetic intermediates.5  Vinylidene carbenes derived from 
aldehydes rearrange smoothly to alkynes,5,6 while those generated from 
ketones can be trapped by alcohols to form enol ethers.3,7 
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Scheme 1.  Diethyl and dimethyl (1-diazo-2-oxopropyl)phosphonate 

 
The application of 1 and 2 for the one-carbon homologation of aldehydes 

to alkynes was first reported by Ohira3 and subsequently developed further 
by Bestmann.8  Today the “Ohira-Bestmann reaction” provides one of the 
most widely used methods for the synthesis of acetylenes.9  Although 
(diazomethyl)phosphonate (DAMP) itself is commercially available, DAMP 
is expensive and has limited shelf life, and the Ohira-Bestmann protocol 
provides an efficient and convenient means of generating the conjugate base 
of DAMP in situ for reaction with aldehydes. 

Although commercially available, both diethyl and dimethyl (1-diazo-2-
oxopropyl)phosphonate are relatively expensive and so many labs opt to 
prepare the reagents which can then be stored indefinitely for use in the 
Ohira-Bestmann homologation and other reactions.  As summarized in 
Scheme 2, several groups have reported the application of diazo transfer10 to 
dialkyl (2-oxopropyl)phosphonate  as an efficient method for the preparation 
of the “Ohira-Bestmann reagents” 1 and 2.11-15 

Vandewalle described the first synthesis of 2 via diazo transfer in 1984 
using TsN3.11  The hazards associated with this azide led Meffre12 and 
Pietruszka14 to instead employ 4-acetamidobenzenesulfonyl azide (“p-
ABSA”), a sulfonyl azide introduced by Davies16 in 1987 as a safer alternative 
to MsN3 and TsN3.  Finally, Hanson13 has deployed a polymeric sulfonyl 
azide to facilitate separation of the sulfonamide byproduct formed in the 
reaction, and Kristensen15 has described the use of an imidazolyl sulfonyl 
azide for the generation of 2 in situ for reactions with aldehydes in the Ohira-
Bestmann alkyne synthesis. 

The procedure described in this article employs a modification of the 
method of Pietruszka.14  We have found that sodium hydride is a reliable 
choice as base for the reaction provided that it is not contaminated with 
NaOH formed by exposure to moisture during storage.  Reduced yields of 1 
were obtained using NaH from old containers due to cleavage of the acetyl 
group by nucleophilic hydroxide.  Attempts to effect the diazo transfer using 
DBU in place of NaH led to complex mixtures and reaction with Et3N was 
very slow and afforded <10% of the desired diazo compound. 

O
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Scheme 2.  Synthesis of the Ohira-Bestmann reagents 1 and 2 
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As the diazo transfer reagent, we favor the use of p-ABSA which is 
commercially available, stable to storage, and safer to handle as compared to 
other sulfonyl azide reagents.  In addition, the sulfonamide byproduct 
formed in the reaction of this azide can be separated by filtration, simplifying 
the purification of the diazo product by chromatography. 
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reported to exhibit no impact sensitivity and is a safer reagent for diazo 
transfer reactions as compared to mesyl azide and tosyl azide. 

 
 

Appendix 
Chemical Abstracts Nomenclature (Registry Number) 

 
Diethyl (2-oxopropyl)phosphonate; (1067-71-6) 

Sodium hydride; (7646-69-7) 
4-Acetamidobenzenesulfonyl azide; (2158-14-7) 
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Thermal Stability Analysis for Major Reaction Components of Ohira-
Bestmann Reagent 

 
Zhe Wang and Steve Richter 

 
The purpose of this study is to screen thermal stability of starting material, reagent and 
product in the following reaction:  

 
 
Summary of Findings and Recommendations 

• The starting material diethyl(2-oxopropyl)phosphonate exhibits exothermic events 
near 246°C (DH= -376 J/g) and 278°C (DH= -376 J/g).   

• 4-acetamidobenzenesulfonyl azide exhibits an exothermic event near 116°C (DH= 
-1280 J/g) and additional exothermic events near 211°C (DH= -17 J/g) and 297°C 
(DH= -145 J/g). 

• The product diethyl(1-diazo-2-oxopropyl)phosphonate exhibits exothermic events 
near 86°C (DH= -689 J/g), 226°C (DH= -107 J/g) and 276°C (DH= -32 J/g). 

• In the event that pH is lowered, hydrazoic acid may be formed. The hydrazoic 
acid is unstable and may decompose violently.   

 
Testing Results 
• DSC test results are summarized below: 

Compound DH (J/g) Range (°C) 
Diethyl(2-
oxopropyl)phosphonate, 
Oakwood lot 079617N05H, CAS 
1067-71-7 

-376 246-276 
+37(endo) 276-278 

-659 278-347 

4-acetamidobenzenesulfonyl 
azide, Oakwood lot 
450489R06R, CAS 2158-14-7 

+91(endo) 95-116 
-1280 116-204 
-17 211-247 
-145 297-336 

Product, Diethyl(1-diazo-2-
oxopropyl)phosphonate, lot 
15062986-0761 

-689 86-210 
-107 226-268 

+50(endo) 268-276 
-32 276-295 

 



 

 

• The azide reagent, 4-acetamidobenzenesulfonyl azide, exhibits an exothermic event 
detected near 116°C (DH= -1280 J/g). 

• The liquid form product, diethyl(1-diazo-2-oxopropyl)phosphonate, exhibits 
exothermic events near 86°C (DH= -689 J/g).  The safe handing temperature of the 
product should be ~100oC below the onset temperature, giving the safety margin for 
the data obtained using DSC.  (Distillation may not be performed without further 
investigation). 

• In the event that pH is lowered, hydrazoic acid may be formed. The hydrazoic acid is 
unstable and may decompose violently.  It has a boiling point of 36°C and a lower 
explosion limit (LEL) of 10% in nitrogen. The hydrazoic acid may react with metals 
or organic materials to form unstable metal azides or other organic azides.  To 
prevent the formation of explosive atmosphere in the reactor, nitrogen may need to be 
flowing through the reactor to keep the hydrazoic acid vapor concentration below 
25% of the LEL. 

 
 
DSC Results 

Differential Scanning Calorimetry (DSC) results were acquired in this study with a 
Mettler Toledo Differential Scanning Calorimeter.  Samples were first sealed in gold plated 
high pressure metal cell or glass cell and heated in the DSC furnace, typically from 0°C to 
400°C at 1 – 10°C/min. 

 
Thermal stability of the starting materials, intermediates, and final product was 

examined by DSC.  The results are summarized in Table 1 and the following figures.1 

Table 1: DSC Results 

Compound Mass 
(mg) 

Test 
Number 

Figure DH  
(J/g) 

Range 
(°C) 

Diethyl(2-oxopropyl)phosphonate, 
Oakwood lot 079617N05H, CAS 1067-
71-7 

17.77 
 23003 1 

-376 246-276 
+37(endo) 276-278 

-659 278-347 

4-acetamidobenzenesulfonyl azide, 
Oakwood lot 450489R06R, CAS 2158-
14-7 

8.85 23001 2 

+91(endo) 95-116 
-1280 116-204 
-17 211-247 
-145 297-336 

Product, Diethyl(1-diazo-2-
oxopropyl)phosphonate, lot 15062986-
0761 

11.45 23002 3 

-689 86-210 
-107 226-268 

+50(endo) 268-276 
-32 276-295 

 



 

 

Figure 1:  DSC Results for Diethyl(2-oxopropyl)phosphonate  

          

Figure 2:  DSC Results for 4-acetamidobenzenesulfonyl azide  

 



 

 

 
 

Figure 3:  DSC Results for Diethyl(1-diazo-2-oxopropyl)phosphonate  

  
 
 


