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PREPARATION OF CYCLOHEPTANE-1,3-DIONE VIA 

REDUCTIVE RING EXPANSION OF 1-TRIMETHYLSILYLOXY-

7,7-DICHLOROBICYCLO[3.2.0]HEPTAN-6-ONE 

 (Cycloheptane-1,3-dione) 
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Submitted by Nga Do, Ruth E. McDermott, and John A. Ragan.1a 
Checked by Andrew Martins and Mark Lautens. 
 

1.  Procedure 

 
 A.  1-Trimethylsilyloxy-7,7-dichlorobicyclo[3.2.0]heptan-6-one (Note 1).  
A 500-mL, three-necked, round-bottomed flask equipped with a nitrogen 
outlet, internal temperature probe, 125-mL addition funnel (capped with a 
septum and nitrogen inlet), and a 65 x 20 mm egg-shaped magnetic stir bar 
is purged with nitrogen, then charged with 1-trimethylsilyloxycyclopentene 
(20.8 g, 133 mmol) (Note 2), hexanes (208 mL), and triethylamine (22.3 
mL, 16.2 g, 160 mmol, 1.2 equiv) (Note 3).  The addition funnel is charged 
with hexanes (100 mL) and dichloroacetyl chloride (12.8 mL, 19.6 g, 133 
mmol, 1.0 equiv), and this solution is added dropwise to the vigorously 
stirred reaction mixture at a rate that maintains effective stirring and an 
internal temperature below 30 °C (the addition requires 30-40 min).  A white 
precipitate (Et3N•HCl) forms during the addition, turning to a brown slurry 
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upon complete addition.  The slurry is stirred for 12 h, at which time GC 
analysis shows approximately 10% starting enol ether (Note 4).  An 
additional portion of dichloroacetyl chloride (1.5 mL, 2.3 g, 16 mmol, 0.12 
equiv) in 3 mL of hexanes is added to the reaction mixture via the addition 
funnel.  After 1 h (Note 5), GC/MS analysis shows no remaining starting 
material.  A sintered-glass Büchner funnel (8 cm diameter, 350 mL capacity) 
is charged with 40 g of silica gel (Note 6) slurried in hexanes, and the 
reaction mixture is filtered with suction through this pad into a 2-L filter 
flask rinsing with an additional 600 mL of hexanes in three portions.  The 
clear, pale-yellow filtrate is concentrated on the rotary evaporator (25 
mmHg, room temperature water bath) to provide the product as a pale-
yellow liquid which crystallizes to a yellow solid when stored in the freezer 
(7 ˚C ) (29.9 g, 112 mmol, 84% yield) (Note 7).  This material is used 
without further purification in the next step. 
 B.  1-Trimethylsilyloxybicyclo[3.2.0]heptan-6-one.  A 1-L, four-necked, 
round-bottomed flask equipped with an overhead stirrer, adapter with 
internal temperature probe, reflux condenser with nitrogen inlet, and a 
septum with nitrogen outlet is purged with nitrogen, then charged with 2-
propanol (350 mL, Note 3) and nitrogen is bubbled through the solvent for 
15 min via a 30-cm, 18 gauge needle.  The mechanical stirrer, fitted with a 
60 X 20 mm Teflon paddle, is started at 120-150 rpm.  1-Trimethylsilyloxy-
7,7-dichlorobicyclo[3.2.0]heptan-6-one (29.9 g, 112 mmol) is dissolved in 
50 mL of 2-propanol (gentle heating is required) and added to the reaction 
flask, rinsing with an additional 50 mL, then 20 mL of 2-propanol. Nitrogen 
is then bubbled through the solution for 15 min. The septum is removed and 
replaced with a glass funnel, through which 10% Pd/C (5.98 g, 50% w/w in 
water) is added, the septum is replaced, and nitrogen is bubbled through the 
solution for 5 min. The septum is removed again, replaced with a glass 
funnel, and sodium formate is added in a single portion (38.1 g, 559 mmol, 
5.0 equiv, Note 3), rinsing with 25 mL of 2-propanol The septum is replaced 
and nitrogen is bubbled through the solution for 5 min.  The flask is heated 
in an oil bath to an internal temperature of 80 °C, and is maintained at this 
temperature with stirring for 18 h.  The reaction mixture is cooled to room 
temperature and a 60-µL  aliquot is removed and diluted with 600 µL of 
ether.  A 4-µL sample of this solution is analyzed by GC (Note 4), and 
shows complete conversion.  The slurry is filtered with suction through a 
pad of Celite (8 cm diameter sintered glass funnel, 350 mL volume, with a 4 
cm pad of Celite), into a 1-L filter flask rinsing with four 50-mL portions of 
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2-propanol.  The filtrate is concentrated on the rotary evaporator (25 mmHg, 
room temperature water bath) to a cloudy, yellow oil, which is then diluted 
with 150 mL of methyl t-butyl ether (MTBE, Note 3) and then is transferred 
to a 250-mL separatory funnel.  The organic phase is washed with three 
portions of half-saturated brine (75 mL each), once with saturated brine, then 
is dried over sodium sulfate, filtered, and concentrated on the rotary 
evaporator (25 mmHg, room temperature water bath) to provide the product 
as a clear, orange oil (17.2 g, 86.7 mmol, 77% yield) (Note 8) with traces of 
MTBE and 2-propanol.  This material is used without further purification in 
the next reaction.   
 C. Cycloheptane-1,3-dione.  A three-necked, 250-mL, round-bottomed 
flask equipped with an internal temperature probe, 50-mL addition funnel 
with nitrogen inlet, a septum with nitrogen outlet and magnetic stir bar is 
purged with nitrogen and charged with 1-trimethylsilyloxybicyclo[3.2.0]-
heptan-6-one (17.1 g, 81.0 mmol) and 33 mL each of 2-propanol and water.  
The solution is cooled to an internal temperature of 0-5 °C with an ice-water 
bath, and 26 mL of 2:1 water-acetic acid (v/v) is added dropwise via the 
addition funnel over 30 min.  At this rate of addition, the internal 
temperature remains below 5 °C throughout the addition.  The solution is 
then allowed to stir for 16 h and gradually come to room temperature.  A 60-
µL aliquot is removed and diluted with 600 µL of ether from which a 4-µL 
sample is used for GC analysis (Note 4), which shows complete conversion 
to cycloheptane-1,3-dione.  The reaction mixture is poured into 200 mL of 
MTBE in a 500-mL separatory funnel.  The layers are separated, and the 
aqueous phase is extracted with an additional 100 mL of MTBE.  The 
organic solutions are combined, washed with 50 mL of brine, and dried over 
sodium sulfate.  Filtration through cotton, rinsing with 50 mL MTBE and 
concentration on the rotary evaporator (25 mmHg, 30 °C water bath) 
provides the crude product as a clear, amber oil. 1H NMR analysis shows the 
diketone contaminated with residual MTBE and acetic acid.  The oil is 
dissolved in 50 mL of dichloromethane, and treated with 22.5 g of silica gel 
(Note 6).  Concentration on the rotary evaporator provides a tan, free-
flowing solid, which is placed on the top of a 7.5 x 23 cm column of silica 
gel packed as a slurry in hexane/Et2O, 2:1.  The column is eluted with 
hexane/Et2O, 2:1 (500 mL) and 1:1 (3.8 L), followed by combination of the 
product-containing fractions (TLC in hexane/Et2O, 1:1, visualization with p-
anisaldehyde stain). The combined fractions are concentrated via rotary 
evaporator, under vacuum (25 mmHg, room temperature water bath) to 



Org. Synth. 2008, 85, 138-146  141 

provide cycloheptane-1,3-dione as a clear, pale-yellow oil (6.69 g, 53.1 
mmol, 61% yield).  This material is approximately 95% pure as determined 
by 1H NMR analysis and is suitable for most subsequent uses, although the 
chromatographed material fails combustion analysis.  If necessary, further 
purification can be achieved by short path vacuum distillation (Notes 9, 10, 
and 11). 
 

2.  Notes 

 
1.   This procedure is a modification of that reported previously by 

the submitters.3  

2.   1-Trimethylsilyloxycyclopentene (97%) was purchased from 
Aldrich Chemical Company, Inc., and used as received.  It can also be 
prepared from cyclopentanone.4 The reported yields were obtained using a 
freshly-opened bottle; older bottles became colored and cloudy, and afforded 
lower yields.     

3.   Dichloroacetyl chloride (98%, freshly opened bottle), methyl t-
butyl ether (99.8%, HPLC grade) and sodium formate (99+%) were 
purchased from Aldrich Chemical Company.  Glacial acetic acid (99%), 
hexane (99%) and isopropyl alcohol (99.5%) were purchased from Fisher 
Scientific. Triethylamine (98%) was purchased from ACP Chemicals. Pd/C 
(10 wt%) was purchased from Alfa Aesar.  All reagents and solvents were 
used as received. 

4.   A Hewlett-Packard GC with an HP-5 0.25 mm x 60 m, 0.25 µm 
column was used.  Oven temperature program: 1 min at 40 °C, 20 °C/min 
ramp to 300 °C, 4 min hold at 300 °C.  The carrier gas (He) was held at a 
constant flow rate of 1.0 mL/min.  Detection was by flame ionization 
detector.   
 Compound Retention time (min) 

1-Trimethylsilyloxycyclopentene 9.1 
1-Trimethylsilyloxy-7,7-dichlorobicyclo[3.2.0]heptan-6-one (1) 12.9 
1-Trimethylsilyloxy-bicyclo[3.2.0]heptan-6-one (2) 11.4 
Cycloheptane-1,3-dione (3) 10.9 
 

5.  GC analysis after 30 minutes still showed a peak for the silyl enol 
ether (~7% remaining); however, the addition of extra Et3N and/or 
dichloroacetyl chloride did not change the product/silyl enol ether ratio. 

6.  Silica gel (40-63 µm) was purchased from Silicycle Inc. 
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7.  1H NMR (CDCl3, 400 MHz) : 0.25 (s, 9 H), 1.50-1.63 (m, 1 H), 
1.86-1.98 (m, 2 H), 2.00-2.11 (m, 2 H), 2.51-2.58 (m, 1 H), 3.66 (br d, J = 
8.6 Hz, 1 H); 13C NMR (100 MHz, CDCl3)  1.6, 25.2, 29.1, 38.1, 67.9, 
87.8, 92.2, 199.3; IR thin film (cm-1) 844, 1106, 1253, 1324, 1804, 2961; 
MS (EI) m/z (relative intensity): 266 (1), 149 (20), 93 (12), 84 (12), 79 (17), 
75 (12), 73 (100), 55 (12).  This data is in agreement with that reported by 
Krepski and Hassner.5   

8.   1H NMR (CDCl3, 400 MHz) : 0.17 (s, 9 H), 1.47-1.65 (m, 1 H), 
1.76-2.00 (m, 4 H), 2.11-2.18 (m, 1 H), 2.92-3.01 (m, 1 H), 3.24-3.39 (m, 2 
H); 13C NMR (100 MHz, CDCl3)  1.5, 25.8, 28.7, 40.5, 59.7, 70.3, 77.4, 
212.4; IR neat (cm-1) 844, 1087, 1224, 1253, 1782, 2956MS (EI) m/z 
(relative intensity): 170 (18), 169 (100), 157 (75), 156 (95), 155 (25), 75 
(90), 73 (68).  This data is in agreement with that reported by Pak.6   

9.    The chromatographically-purified diketone (3.00 g) is placed in 
a 25-mL round bottomed flask equipped with a short-path distillation 
apparatus (8-cm stillhead length with a 7-cm jacketed water-cooled 
condenser and 4 pronged distribution adapter) and heated in an oil bath (bath 
temperature reached ~105 oC) under reduced pressure (0.20 – 0.22 mmHg). 
The product distilled over at a head temperature of 81-82 oC, to afford 2.34 g 
(78 % recovery) of analytically pure diketone (Note 10). 

10.   The product exhibits the following physicochemical properties: 
1H NMR (CDCl3, 400 MHz) : 1.96-2.03 (m, 4 H), 2.56-2.63 (m, 4 H), 3.61 
(s, 2 H); 13C NMR (CDCl3, 100 MHz) : 25.1, 44.2, 59.9, 205.1; MS (EI) 
m/z (relative intensity): 126 (68), 98 (100), 83 (37), 70 (43), 55 (49); IR 
(film): 3608 , 2943, 2867, 1714, 1694, 1455, 1207, 1134, 924 cm-1.  HRMS 
(EI): calcd for C7H10O2: 126.0681 (M+), found: 126.0679. Anal. Calcd for 
C7H10O2: C, 66.65; H, 7.99; Found: C, 66.34; H, 8.14.  This data is in 
agreement with that reported previously.2f   

11.  The diketone should be stored cold under nitrogen.  The diketone 
is unstable to base, readily undergoing a retro-Dieckmann cyclization to 
form 6-oxoheptanoic acid.7  The checkers report that storing under nitrogen 
is not necessary, and that the product did not noticeably degrade after several 
months in the freezer at -10 oC. 
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Safety and Waste Disposal Information 
 
 All hazardous materials should be handled and disposed of in 
accordance with “Prudent Practices in the Laboratory”; National Academy 
Press; Washington, DC, 1995. 
 

3.  Discussion 

 
 Several syntheses of cycloheptane-1,3-dione have been reported in the 
literature.2  At the time this work was initiated, we required a practical 
synthesis capable of providing multi-kilogram quantities of this 
intermediate.  None of the existing literature syntheses were deemed 
adequate for this purpose due to a combination of practicality considerations 
and the use of heavy metal or potentially explosive reagents (e.g. ethyl 
diazoacetate,2a PhHg(CBr3),

2c ClCH2OCH3,
2e or Hg(OAc)2).

2f  We were 
aware of Hassner’s preparation of the bicyclic adduct of dichloroketene and 
1-trimethylsilyloxycyclopentene,5 and Pak’s observation that the 
dechlorinated derivative of this diketone was converted to cycloheptane-1,3-
dione upon treatment with fluoride ion.6  However, the conditions described 
for the reduction (stoichiometric amount of Bu3SnH) were not practical for 
the large scale preparation of an intermediate destined to be converted into 
clinical supplies.  We found and reported that a Zn/AcOH/aq 2-propanol 
system effected the desired reduction, desilylation and ring expansion in a 
single-pot sequence.3  Unfortunately, upon scale-up this reaction suffered a 
dramatic decrease in yield, due to formation of a mixture of the desired 
diketone and 2-acetylcyclopentanone,7 an observation also made by others.8   
 We believe the reason for this formation of consitutuional isomers to be 
competition between two reaction pathways, as shown below.7  In path A, 
reduction of both chlorine atoms prior to desilylation leads to clean 
formation of the desired diketone (3).  However, if desilylation precedes 
chlorine atom reduction (path B), then the retro-aldol reaction generates a 2-
acetyl-substituted cyclopentanone (4) by rupture of the C1-C7 bond.  
Chlorine atom reduction then generates 2-acetylcyclopentanone (5).  These 
results are consistent with observations made by Hassner and Krepski on 
related dichlorocyclobutanones.5   
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 In this improved procedure we report that transfer hydrogenolysis with 
sodium formate efficiently reduces the chlorine atoms without any 
desilylation.  Acid-mediated desilylation then cleanly forms the desired 
diketone, with none of the isomeric product being formed.  Although this 
improved process involves three separate operations, there is no need to 
purify either intermediate, leading to an efficient preparation of the title 
diketone. 
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Appendix 

Chemical Abstract Nomenclature (Registry Number) 

 
Cycloheptane-1,3-dione (1194-18-9) 

1-Trimethylsilyloxybicyclo[3.2.0]heptan-6-one (125302-44-5) 

1-Trimethylsilyloxy-7,7-dichlorobicyclo[3.2.0]heptan-6-one (66324-01-4) 

Dichloroacetyl chloride (79-36-7) 

1-Trimethylsilyloxycyclopentene (19980-43-9) 

Acetic acid (64-19-7)  
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Cycloheptane-1,3-dione (distilled)
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Cycloheptane-1,3,-dione (distilled)

O O

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

ppm

4.064.001.91

Chloroform-d

3
.5

3

 

2.1 2.0 1.9 1.8 1.7

ppm

1
.9

0
1

.9
0

1
.9

1

1
.9

2
1

.9
3

2.7 2.6 2.5 2.4 2.3

ppm

2
.4

9
2
.5

1
2
.5

2


