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1. Procedure

A 1-L round-bottomed flask (Note 1) equipped with a 3-cm egg-shaped 

magnetic stir bar is charged with tris(dibenzylideneacetone)-dipalladium(0)-

chloroform adduct (0.388 g, 0.375 mmol, 0.005 equiv), (S)-(–)-5,5’-

dichloro-6,6’-dimethoxy-2,2’-bis(diphenylphosphino)-1,1’-biphenyl (0.977 

g, 1.50 mmol, 0.02 equiv) and lithium chloride (7.63 g, 180 mmol, 2.4 

equiv) (Note 2). The flask is closed with a rubber septum, connected to a 

combined nitrogen/vacuum line via a 16-gauge needle, evacuated (22 °C, 

0.4 mmHg) for 5 h in order to remove traces of water from the lithium salt, 

and filled with nitrogen. To this flask is added a solution of allyl methyl 

carbonate (8.52 mL, 8.71 g, 75.0 mmol, 1.00 equiv) (Note 3) in dry 

tetrahydrofuran (THF) (195 mL) (Note 4) over 5 min through a 16-gauge 

cannula (Note 5). The deep purple homogeneous solution is stirred at 22 °C 

for 1 h. In the course of stirring, the color changes to yellow. The resulting 

mixture is cooled down to –78 °C in a dry ice/acetone bath with stirring.  A 

500-mL, three-necked, round-bottomed flask is equipped with a 3-cm egg-

shaped magnetic stir bar, a glass stopper, a rubber septum fitted with the 
combined nitrogen/vacuum line via a 16-gauge needle, and a low-

temperature thermometer via a thermometer adapter (Note 6). The flask is 
evacuated and refilled with nitrogen three times. To this flask, 
diisopropylamine (11.1 mL, 7.97 g, 78.7 mmol, 1.05 equiv) (Note 7) is 
injected by syringe, and dry THF (75 mL) is added via a 16-gauge cannula.
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The flask is immersed in a dry ice/acetone bath and allowed to stir for 30 

min. A 1.60 M solution of n-butyllithium in n-hexane (46.9 mL, 4.80 g, 75.0 

mmol, 1.00 equiv) (Note 8) is added dropwise by syringe over 30 min. In the 

course of the addition, the internal temperature of the solution should not 

exceed –70 °C. The dry ice/acetone bath is replaced by an ice bath, and 

stirring is continued for 30 min. The mixture is then recooled in the dry 

ice/acetone bath, and a solution of freshly distilled cyclohexanone (7.78 mL, 

7.36 g, 75.0 mmol, 1.00 equiv) (Note 9) in dry THF (75 mL) is added 

dropwise by a syringe over 1 h. In the course of the addition, the internal 

temperature of the solution should not exceed –70 °C. The mixture is stirred 

in an ice bath for 30 min and cooled again to –78 °C (internal temperature) 

in a dry ice/acetone bath. This colorless solution is then transferred over 10 

min through a 16-gauge cannula into the 1 L flask (Note 5). After stirring for 

40 h at –78 °C (Note 10), a yellow solution with white precipitate is 

obtained. This mixture is poured rapidly into a 4 L Erlenmeyer flask charged 

with 1.5 L of phosphate-buffered water (pH 7.00) (Note 11) stirred by a 7-

cm egg-shaped magnetic stir bar. The resulting mixture is transferred into a 

4 L separatory funnel, and extracted with three portions (170 mL, 170 mL, 

and 160 mL) of dichloromethane (CH2Cl2) (Note 11). The combined organic 

layers are dried over 20 g magnesium sulfate (Note 12), filtered, and 

concentrated by rotary evaporation (30 °C, 15 mmHg). The resulting brown-

colored crude product is purified by Kugelrohr distillation (Note 13). A 50-

mL pear-shaped flask containing the crude product is heated to 50 °C, and a 

100-mL receiving flask is cooled in an ice-water bath. While maintaining a 

pressure of 0.05 mmHg, the pure product is collected as a colorless liquid; 

8.08 g (78 %). The enantiomer ratio is determined by GC; ee: 94 % (Notes 

14, 15). 

 

2. Notes 

 

1.   The apparatus was oven-dried overnight, assembled hot and 

maintained under a positive pressure of nitrogen during the course of the 

reaction.   

2.  Tris(dibenzylideneacetone)dipalladium(0) chloroform adduct was 

obtained from Strem Chemicals, Inc. The submitters noted that distinctly 

lower enantioselectivity was obtained when the reagent of other suppliers 

was used. (S)-(–)-5,5’-Dichloro-6,6’-dimethoxy-2,2’-bis(diphenylphos-

phino)-1,1’-biphenyl (min. 95 %) was also purchased by the checkers from 
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Strem Chemicals, Inc. The submitters obtained the ligand from LANXESS.  

Lithium chloride (SigmaUltra, min. 99.0 %) was obtained from Sigma-

Aldrich, Inc. The submitters obtained lithium chloride (Normalpur) from 

VWR-Prolabo. 

3.  Allyl methyl carbonate is commercially available from Sigma-

Aldrich, Inc. The submitters prepared it according to: H. O. L. Fischer, L. 

Feldmann, Ber. Dtsch. Chem. Ges. 1929, 62, 854. The checkers prepared it 

according to: I. Minami, J. Tsuji, Tetrahedron 1987, 43, 3903.  

4.  Tetrahydrofuran (Oprima
®
), was purchased from Fisher 

Scientific, Inc. It was purged with nitrogen and dried over activated alumina. 

The submitters purchased Tetrahydrofuran (technical grade) from Kraemer 

und Martin GmbH. It was refluxed over potassium hydroxide and distilled. 

Then the distillate was refluxed over sodium wire and distilled under 

nitrogen. Freshly distilled tetrahydrofuran was taken from the receiving flask 

via syringe or cannula. 

5.  The cannula was placed with one end immersed in the solution to 

be transferred and the other end in the receiver. A positive nitrogen pressure 

was maintained over the solution to be transferred, and the receiver was 

evacuated such that the solution flowed into the receiver at a steady rate. For 

a description of the technique, see: A. Salzer, in Synthetic Methods of 

Organometallic and Inorganic Chemistry, W. A. Herrmann, G. Brauer, Eds.; 

Vol. 1, W. A. Herrmann, A. Salzer, Volume Eds.; Thieme, Stuttgart 1996, 

page 26. 

6.  The submitters used a thermocouple connected to a resistance 

thermometer introduced through a septum to indicate the internal 

temperature. 

7.  Diisopropylamine (purity >99.5 %) was purchased from Sigma-

Aldrich, Inc. It was refluxed over calcium hydride and distilled under 

nitrogen. The submitters used 1.00 equiv (7.59 g, 10.5 mL, 75.0 mmol) of 

diisopropylamine. 

8. n-Butyllithium (1.6 M solution in n-hexane) was purchased from 

Sigma-Aldrich, Inc., and titrated according to: J. Org. Chem. 1976, 41, 

1879. The submitters purchased n-butyllithium (1.6 M solution in n-hexane) 

from Acros Organics. 

9. Cyclohexanone (Selectphore
®
) was obtained from Sigma-

Aldrich, Inc. The submitters obtained cyclohexanone (extra pure) from 

Riedel-de Haën. It was refluxed over calcium hydride and distilled under 

nitrogen. 



50  Org. Synth. 2009, 86, 47-58 

10.  In order to keep the bath temperature at –78 °C, the Dewar vessel 

was covered with a 3.5 cm thick insulating lid of Styropor
®
, cut in such a 

way that space is left only for the neck of the reaction flask. Solid dry ice 

was always maintained in the acetone bath. Additional dry ice was to be 

added every 6-8 hours. The submitters noted that shorter reaction time (15 h) 

led to a decrease in yield. 

11.  Buffer solution pH 7.00 with fungicide was supplied by Riedel-

de Haën. Dichloromethane (Certified ACS) was purchased from Ficher 

Scientific, Inc. The submitters used dichloromethane (technical grade) from 

Ineos Chlor Ltd. 

12.  Magnesium sulfate (Anhydrous Certified) was purchased from 

Ficher Scientific, Inc. The submitters purchased magnesium sulfate (99% 

DAC) from Grüssing GmbH. 

13.  The submitters purified the product by trap-to-trap distillation. 

The flask containing the crude product was connected by glass tubes to two 

traps. The two traps were cooled to 0 °C and –196 °C, respectively, and the 

flask was heated to 50 °C. While maintaining a pressure of 0.05 mmHg, pure 

product was collected in the 0 °C-trap as a colorless liquid; 8.18 g (79 %); 

ee: 94 %. The trap-to-trap distillation is preferred to a conventional 

distillation in order to prevent partial racemization of the product; in 

addition, it provides a more efficient separation from starting materials. The 

checkers also tested the trap-to-trap distillation on a half-scale reaction. The 

pure product was isolated as a colorless liquid; 4.05 g (78 %); ee: 94 %. 

14.  GC column: Chiraldex™-beta-DP, 20 m x 0.25 mm x 0.25 m; 

column-temperature 80 °C; [(S)-enantiomer tR = 23.9 min, (R)-enantiomer tR 

= 25.4 min]. The submitters used different GC conditions; column: FS-

Hydrodex-beta-TBDAc, 25m x 0.25 mm; column temperature 90 °C; [(S)-

enantiomer tR = 17.4 min, (R)-enantiomer tR = 20.0 min]. 

15.  Physical and spectroscopic data are as follows: [ ]D
25

 –17.4 

(chloroform, c 1); the submitters reported: [ ]D
20

 –17.0 (chloroform, c 1); 

lit.
2g

: [ ]D
20

 –15.8 (methanol, c 3.0); IR (film): 3076, 2935, 2861, 1711, 

1641, 1448, 1432, 1313, 1126, 996, 912 cm
-1

; 
1
H-NMR (500 MHz, CDCl3) 

: 1.30-1.42 (m, 1 H), 1.61-1.71 (m, 2 H), 1.81-1.92 (m, 1 H), 1.94-2.09 (m, 

2 H), 2.09-2.17 (m, 1 H), 2.25-2.44 (m, 3 H), 2.50-2.58 (m, 1 H), 4.96-5.05 

(m, 2 H), 5.76 (dddd, J = 6.5, 8.0, 10.2, 17.0 Hz, 1 H); 
13

C NMR (125 MHz, 

CDCl3) : 24.9, 27.9, 33.4, 33.7, 42.0, 50.2, 116.2, 136.5, 212.5. Anal. 

Calcd. for C9H14O: C, 78.21; H, 10.21; O 11.58. Found: C, 78.01; H, 10.19; 
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O 11.89. HRMS: Calcd. for C9H14ONa
+ 

(M+Na): 161.093686.  Found: 

161.093303. 

 

 Waste Disposal Information 

 

All hazardous materials should be handled and disposed of in 

accordance with “Prudent Practices in the Laboratory”; National Academy 

Press; Washington, DC, 1995. 

 

3. Discussion 

 

The enantiomeric (R)- and/or (S)-2-allylcyclohexanone has been chosen 

frequently in order to demonstrate the scope of different approaches in 

stereoselective synthesis. Among them, the allylic alkylation of azaenolates 

and enamines with chiral auxiliary groups has been used frequently.
2
 In 

addition, access to the enantiomeric 2-allylcyclohexanones has been opened 

by deracemization through enzymic resolution
3
 or formation of inclusion 

compounds.
4
 Prochiral allyl-substituted enol acetates and enol carbonates 

have been converted into nonracemic 2-allylcyclohexanone by enantioface 

differentiating enzymatic hydrolysis.
5
 Allyl-substituted enolates also lead to 

2-allylcyclohexanone in an enantioselective way when treated with 

stoichiometric amounts of proton sources.
6
 The allylation of the lithium 

enolate of cyclohexanone has been accomplished in the presence of chiral 

amines used in stoichiometric
7
 or substoichiometric amounts.

8
 

The palladium-catalyzed asymmetric allylic alkylation has developed 

into an exceptionally useful and versatile method for enantioselective 

carbon-carbon and carbon-heteroatom bond formation.
9
 However, carbon 

nucleophiles have been limited to “soft”, stabilized carbanions almost 

exclusively. Extending the asymmetric allylic substitution to include 

preformed, nonstabilized metal enolates
10

 would significantly enhance its 

versatility, in particular because it would permit enantioselective alkylation 

in the homoallylic position.  After early approaches of combining metal 

enolates with allylpalladium complexes,
11

 the first enantioselective allylic 

alkylation of a nonstabilized ketone enolate was presented by Trost and 

Schroeder in 1999 using the tin enolate of 2-methyl-1-tetralone.
12a

 Shortly 

thereafter, we reported the enantioselective and diastereoselective allylation 

of cyclohexanone through the lithium or magnesium enolates.
13

 Additional 

examples using lithium enolates were also reported.
12c-e, 16

 More recently, it 
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has been shown that enantioselective palladium-catalyzed allylic alkylations 

are feasible not only with enol stannanes
12a, b

 but also with enol silanes,
14

 and 

enamines.
15

 An alternative solution to the problem of the enantioselective 

allylic alkylation of nonstabilized enolates relies on their in situ generation, 

using allyl -ketoesters or allyl enol carbonates.
17

 Upon treatment with 

palladium(0) catalysts, carbon dioxide is liberated, and the enolate anion and 

the cationic palladium complex thus formed combine to give the allylated 

ketone. The method has been applied mostly for forming quaternary carbon 

centers, but was also used for the preparation of 2-allylcyclohexanone, 

starting from enol carbonate 1 as shown below.
17c

 

 

O
O

[Pd2[dba)3]  CHCl3 (2.5 mol%).

78% (78% ee)

O
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1

HNNH

O O
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The allylic alkylation through the in situ generated enolates requires the 

previous preparation, isolation, and purification of either allyl enol 

carbonates or -ketoesters. Compared to our direct allylic alkylation of 

preformed lithium or magnesium enolates, those protocols can be regarded 

as a detour in that an additional step is required. Additionally, in the case of 

2-allylcyclohexanone, the route through the lithium enolate provides higher 

enantioselectivity than the enol carbonate route. The direct allylation of 

lithium and magnesium enolates has been extended to other ketones as well 

as to substituted allylic starting materials. As shown in Table 1,
18

 both 

enantioselective and diastereoselective variants are possible. The protocol 

permits the generation of compounds with contiguous stereogenic centers in 

the allylic and the homoallylic position in an enantioselective and 

diastereoselective manner (entries 1-3) and can be applied to the asymmetric 

allylic alkylation of cyclopentanone and 1-tetralone (entries 4 and 5). When 

extended to diastereomerically and enantiomerically pure allylic substrates 

(entries 6-9), the achiral ligand bis(diphenylphosphino)ferrocene is suitable 
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to bring about regioselective and diastereoselective allylic alkylations 

leading to enantiomerically pure products. 

 

Table 1. Enantioselective and/or diastereoselective allylic alkylations of 

magnesium and lithium enolates.
18
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Table 1. (continued) Enantioselective and/or diastereoselective allylic 

alkylations of magnesium and lithium enolates.
18
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Ar = 2,4,6-Me3C6H2; MEM = CH2OCH2CH2OCH3
a) Starting material methyl (pent-3-en-2-yl) carbonate was recovered in 30%; b) yield of isolated major 

diastereomer; c) bis(diphenylphosphino)ferrocene; allyl compound was used as pure diastereomer and 

enantiomer; enantiomerically pure product(s); d)  yield of diastereomeric mixture.

97d
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Appendix 

Chemical Abstracts Nomenclature; (Registry Number) 

 

Tris(dibenzylideneacetone)-dipalladium(0)-chloroform adduct; (52522-40-4) 

(S)-(–)-5,5’-Dichloro-6,6’-dimethoxy-2,2’-bis(diphenylphosphino)-1,1’-

biphenyl: Phosphine, [(1S)-5,5'-dichloro-6,6'-dimethoxy[1,1'-
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biphenyl]-2,2'-diyl]bis[diphenyl-; (185913-98-8) 

Lithium chloride; (7447-41-8) 

Allyl methyl carbonate: Carbonic acid, methyl 2-propen-1-yl ester; (35466-

83-2)  

Diisopropylamine: 2-Propanamine, N-(1-methylethyl)-; (108-18-4)  

n-Butyllithium; (109-72-8) 

Cyclohexanone; (108-94-1) 

(S)-(–)-2-Allylcyclohexanone: Cyclohexanone, 2-(2-propen-1-yl)-, (2S)-; 

(36302-35-9) 
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