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0-ARYLATION OF ESTERS CATALYZED BY THE Pd(I) DIMER
[P(-Bu);Pd(u-Br)],
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1. Procedure

A 500-mL, 3-necked, round-bottomed flask (Note 1) equipped with a
3-cm oval Teflon-coated magnetic stir bar is fitted with a gas inlet adapter
connected to a nitrogen line and a gas bubbler. The other two necks are
capped with rubber septa; a thermocouple probe is inserted through one of
the septa. (Note 2) To the flask is added anhydrous toluene (100 mL,
Note 3) and dicyclohexylamine (9.96 g, 54.9 mmol, 1.3 equiv). The flask is
placed in an ice-water bath and cooled with stirring to +2 °C.
n-Butyllithium (2.36 M in hexanes, 22.0 mL, 15.2 g, 51.9 mmol, 1.23 equiv)
is added over 10 min to the cooled solution of dicyclohexylamine via a 50-
mL disposable syringe (Notes 4 and 5). The reaction mixture is stirred for
20 min at 0-5 °C. To the resulting lithium dicyclohexylamide suspension is
added methyl isobutyrate (5.40 mL, 4.80 g, 47.0 mol, 1.11 equiv) over 20
min via a disposable 10-mL syringe (Note 6). The reaction mixture is stirred
for an additional 30 min at 0-5 °C. 3-Bromoanisole (5.40 mL, 7.90 g, 42.2
mol, 1.00 equiv) is then added over 1 min via a 10-mL disposable syringe.
The mixture is degassed by two vacuum-nitrogen purge cycles (Note 7). A
septum is removed, [P(#-Bu);Pd(u-Br)], (12.4 mg, 0.0160 mmol, 0.00038
equiv) is added under a flow of nitrogen, and then the septum is replaced
(Note 8). The flask is removed from the ice-water bath, allowed to warm to
ambient temperature, and the reaction mixture is stirred for one hour (Note
9). A septum is removed and additional [P(#-Bu);Pd(u-Br)], (13.8 mg,
0.0180 mmol, 0.00042 equiv) is added under a flow of nitrogen (Note 10).
The reaction mixture is stirred at ambient temperature for 4 h. After
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confirming reaction completion (Note 9), #-butyl methyl ether (100 mL) is
added. One septum is removed and replaced with a 100-mL dropping
funnel. Aqueous HCI (1IN, 70 mL) is added to the reaction mixture over 10
min via the dropping funnel, resulting in a temperature rise to 30 °C and
formation of a thick slurry (Note 11). The resulting suspension is stirred for
10 min and then is filtered through a 600-mL coarse-porosity sintered glass
funnel. The precipitate is washed with #-butyl methyl ether (4 x 25 mL).
The resulting mixture 1s transferred to a 500-mL separatory funnel, and the
organic layer is separated, washed sequentially with saturated aqueous
NaHCO; (50 mL) and brine (50 mL), and then is vacuum-filtered through a
bed of Na,SO,4 (50 g) in a 350-mL medium porosity sintered glass funnel.
The cake is rinsed with #-butyl methyl ether (3 x 25 mL). The filtrate is
concentrated by rotary evaporation (40 °C bath, 100 mmHg initial, lowered
to 20 mmHg) to afford the crude product (10.2 g), which is purified by silica
gel column chromatography (Note 12) to furnish methyl 2-(3-
methoxyphenyl)-2-methylpropanoate (7.14-7.59 g, 81-86 % yield) as a
clear yellow oil (Notes 13-15).

2. Notes

1. All glassware was dried in an oven at 130 °C prior to use.

2. The internal temperature is monitored using a J-Kem Gemini
digital thermometer with a Teflon-coated T-Type thermocouple probe (12-
inch length, 1/8 inch outer diameter, temperature range —200 to +250 °C).

3. The following reagents and solvents were obtained from Sigma-
Aldrich and used without further purification: toluene (ACS reagent,
>99.5%, dried over 3A pelleted molecular sieves), 2.5 M BuLi in hexanes,
dicyclohexylamine (99%), methyl isobutyrate (99%), 3-bromoanisole (98%)),
t-butyl methyl ether (ACS reagent, >99%), ethyl acetate (ACS reagent,
>99.5%), and hexanes (ACS reagent, >98.5%). [P(z-Bu);Pd(u-Br)], was
obtained from Strem and stored in a glove box freezer at —35 °C. Deionized
tap water was used throughout.

4. The mass of n-BuLi added was determined by weighing the
syringe before and after addition. n-BuLi was titrated using diphenylacetic
acid as described in Davies, S. G.; Fletcher, A. M.; Roberts, P. M. Org.
Synth, 2010, 87, 143-160.
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5. The reaction mixture warmed to 7 °C during the addition and
became a yellow slurry as LiNCy, precipitated when the enolate was
formed.

6. Adding the ester slowly is crucial to avoid the Claisen
condensation product, which is difficult to remove from the product by flash
chromatography. The mixture warmed to 6 °C during the addition.

7. The purge cycle was carried out by slowly drawing a vacuum in
the flask, which results in bubbling as the mixture is degassed. After
2 minutes the bubbling nearly ceases and the flask is back-filled with
nitrogen. The cycle is repeated to ensure all dissolved oxygen, which may
be present, is removed.

8. The quality of the catalyst is vital to the reaction. The catalyst
should be a dark metallic green. If there is concern about the quality of the
catalyst, a °'P  NMR spectrum should be obtained. *'P{'H}NMR
(500 MHz,C¢Hg, H3;PO4) 6: 87.0 (s). Poorly performing catalyst is
brown/black in color and contains species that appear in the *'P NMR
spectrum at o6: 107 (s). [P(#-Bu);Pd(u-Br)], decomposes to [Pd(P(z-
Bu);),(C(CH3),CH,)(u-Br)], over time.?

9. The mixture warms to 20 °C over 20 minutes and changes from a
brown mixture to yellow. The progress of the reaction is monitored by
'HNMR (checker) or GC analyses (submitter). At the one-hour reaction
point after the first catalyst addition, the reaction proceeds only 5-10 %. For
the NMR analysis, a sample of the reaction mixture is quenched into a
mixture of 1 mL of 1N HCI and 1 mL of CDCl;. The bottom organic layer
is filtered through a plug of sodium sulfate into an NMR tube. The methyl
resonances of the methyl ester and methoxy group are diagnostic (OMe
product resonance at 3.85 ppm, starting material at 3.84 ppm; CO,Me
product resonance at 3.70 ppm, starting material at 3.72 ppm). GC analyses
were obtained on an Agilent 6890 GC equipped with an HP-5 column
(25 m x 0.20 mm ID x 0.33 pum film) and an FID detector. The temperature
program: hold at 80 °C for 1.5 min, ramp from 80 °C to 300 °C at
100 °C /min, hold at 300 °C for 3 min. #z (3-bromoanisole) = 3.33 min,
(methyl 2-(3-methoxyphenyl)-2-methylpropanoate) = 3.89 min.

10. After the second charge of catalyst the mixture slowly warms from
23 °C to 33 °C over 30 min and then returns to room temperature over the
next hour. The reaction is generally complete within an hour of the second
charge. The checker found the double catalyst charge protocol provided
optimum results, where the first charge is largely sacrificial. When added as
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a single charge, the reaction times were variable (10-30 hours) and generally
stalled at 90% completion. For stalled reactions, a second catalyst charge
even after one-day reaction time will drive the reaction to completion.

11. The 'H NMR spectrum of the precipitate matched the spectrum of
dicylohexylammonium chloride.’

12. A 6-cm glass column is wet-packed (4% EtOAc/hexanes) with
S10, (250 g) topped with 0.5 cm sand. The crude reaction product is loaded
neat on the column and eluted with 4% EtOAc/hexanes (2.5 L), collecting
100 mL fractions. @TLC (UV visualization) is used to follow the
chromatography. The Rf value of the title compound is 0.4 (10%
EtOAc/hexanes). Fractions 15-22 are concentrated by rotary evaporation
(40 °C bath, 20 mmHg), then held under vacuum (20 mmHg) at 22 °C for
20 h to constant weight (7.14-7.59 g).

13. Methyl  2-(3-methoxyphenyl)-2-methylpropanoate  has  the
following physical and spectroscopic data: 'H NMR (400 MHz, CDCL;) &:
1.59 (s, 6 H), 3.67 (s, 3 H), 3.81 (s, 3 H), 6.79 (ddd, J = 8.2, 2.5, 0.8 Hz,
1 H), 6.91-6.89 (m, 1 H), 6.93 (ddd, J= 7.8, 1.8, 0.8 Hz, 1 H), 7.26 (t, J =
8.0 Hz, 1 H). C NMR (100 MHz, CDCl;) &: 26.7, 46.7, 52.3, 55.3, 111.7,
112.4, 118.3, 129.5, 146.6, 159.8, 177.3; IR (thin film): 2978, 2953, 2838,
1729, 1601, 1584, 1490, 1466, 1434, 1263, 1149, 1050 cm™. LC-MS calcd
for [M + H]" 209.2; found 209.1; GC-MS (EI): 208 (M") (25 %), 149 ([M—
CO,Me]")(100 %). HPLC >99 area % purity at 215 nm detection (HPLC
conditions, Zorbax extend C18 column (3 x 150 mm), 3.5 uM particle size;
0.75 mL/min flow; gradient eluent from 5/95 MeCN/ aq. pH 3.5 buffer to
100% MeCN over 9.5 min, hold for 3 min; 35 °C; product elutes at 8.5 min).
An analytical sample was prepared by dissolving 100 mg of the product in
3 mL of hexanes, filtering through a 0.45 micron PTFE syringe filter, and
concentrating to dryness under vacuum for 20 h. Anal. caled. for C;,H;40s:
C, 69.21; H, 7.74; found: C, 68.97; H, 7.73.

14. The product after chromatographic purification contains 0.5-1.0 %
of the Claisen condensation product of methyl isobutyrate (methyl 2,2,4-
trimethyl-3-oxopentanoate; NMR match with the literature, Mloston, G.;
Romanski, J.; Linden, A.; Heimgartner, H. Helv. Chim. Acta 1999, 82, 1302-
1310) as assessed by peak integration of the >C-'H satellite resonances (0.55
%) corresponding to the OMe and CO,Me protons of the product against the
'H resonances corresponding to gem-dimethyl (5 1.39) and Me,CH (8 1.09)
protons of the Claisen impurity. For more details on using BC satellites for
quantitative analysis of low level impurities, see Claridge, T. D. W.; Davies,
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S. G.; Polywka, M. E. C.; Roberts, P. M.; Russell, A. J.; Savory, E. D.;
Smith, A. D. Org. Lett. 2008, 10, 5433. This impurity was not detected by
GC-MS or LC-MS.

15. The major by-product generated in the reaction (2-6 % yield) is N,
N-dicyclohexyl-3-methoxyaniline arising from the C-N cross-coupling
reaction between dicyclohexylamine and 3-bromoanisole. This impurity
elutes prior to the main fraction in the column chromatography and is readily
removed. A pure sample was obtained by combining early fractions from
several reactions and re-chromatographing as follows. A 5-cm glass column
is wet-packed (3% EtOAc/hexanes) with SiO, (150 g) topped with 0.5 cm
sand. The crude amine (1.0 g) is loaded neat and eluted with 3%
EtOAc/hexanes (700 mL), taking 50 mL fractions. Fractions 16-18 are
concentrated by rotary evaporation (40 °C bath, 20 mmHg) to afford N, N-
dicyclohexyl-3-methoxyaniline (0.68 g). 'H NMR (500 MHz, CDCl;) &:
1.11-1.17 (m, 2 H), 1.28-1.36 (m, 4 H), 1.55-1.66 (m, 6 H), 1.75-1.82 (m, 8
H), 3.26 (tt, J=3.3, 11.6 Hz, 2 H), 3.79 (s, 3 H), 6.36 (dd, /= 2.3, 8.2 Hz, 1
H), 6.50 (t, /=2.3 Hz, 1 H), 6.57 (dd, J =2.3, 8.3 Hz, 1 H), 7.09 (t, J = 8.2
Hz, 1 H); "C NMR (125 MHz, CDCl;) 8: 26.2, 26.6, 32.2, 55.3, 58.0, 103.2,
106.7, 113.3, 128.9, 150.4, 160.1.

Safety and Waste Disposal Information

All hazardous materials should be handled and disposed of in
accordance with “Prudent Practices in the Laboratory”; National Academy
Press; Washington, DC, 1995.

3. Discussion

The palladium-catalyzed coupling of carbonyl compounds and aryl halides
is a convenient method for the synthesis of the aryl C-C bond in o-aryl
carboxylic acid derivatives.*” The a-arylation of esters proceeds in high
yields and tolerates a variety of functional groups on both the ester and the
aryl halide.’ The o-arylation of esters with aryl bromides is reported in the
literature to proceed at ambient temperature for catalyst systems containing
tri-fert-butylphosphine as ligand.’® ** > % The catalyst for these systems is

either generated by treating a Pd° precursor with tri-fert-butylphosphine or
from the palladium (I) dimer, [(P(#~-Bu);Pd(u-Br)],. [(P(#-Bu);Pd(u-Br)]; 1s
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an effective catalyst for a number of different cross-coupling reactions.’” >

6 1015 The a-arylation of esters with aryl bromides has been studied with
the [(P(z-Bu);Pd(u-Br)], as the catalyst (Table 1). The coupling of esters
with aryl bromides containing different functional groups and heteroatoms
proceeds in moderate to high yield with low catalyst loadings.”™ This
catalyst is advantageous because it can be weighed in air, even though tri-
tert-butylphosphine is pyrophoric. [(P(#-Bu);Pd(u-Br)], is a more active
catalytic system for the coupling of esters and aryl bromides than other
catalytic systems based on tri-ters-butylphosphine.’® "

Table 1. oa-Arylation of ester with aryl bromides catalyzed by
[(P(+-Bu);Pd(u-Br)], ™"

1.3 equiv ArBr 0
Q LiNCy,  cat. [P(t-Bu)sPdBr],
R1 > > Ar% 3
ORS3 PhMe RT /4 h OR
R? RT /10 min R' R?
1.1 equiv
Enty R!' R? R3 ArBr Cat. loading  Yield?

1 H H tBu t-BuOBr 0.2% 83%

0.4% 82%

3 O 0.2% 86%
4 @ 0.4% 73%

5 Me H t-Bu 0.2% 83%

6 @ Br o-F 0.2% 88%

7 AL 0.2% 90%

8 0.2% 75%
MeO

9 g P-OMe 0.25% 87%
A

10 | m-OMe 0.25% 84%
/ _

1 0-OMe 0.25% 87%
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Table 1. (continued)
Entry R!' R? R3 ArBr Cat. loading  Yield?

2

12 0.05% 72%
13 Me Me Me t-Bu—@—Br 0.05% 72%
14 CI—@—Br 0.5% 89%
15 B pF 0.5% 85%
|
16 F// m-F 0.5% 72%
17 MezNOBr 0.05% 88%
18 g P-OMe 0.5% 85%
N
19 |/ m-OMe 0.5% 88%
=
20 MeO m-OMe  0.075% 779D
21 FSCOBr 0.5% 60%
X
22 | 0.5% 71%
~
N Br
23 & )—Br 0.5% 75%

a) Isolated yields (average of two runs) for reaction of 1 mmol of bromorarene in 3 mL toluene. b) This work
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Appendix
Chemical Abstracts Nomenclature; (Registry Number)

Dicyclohexylamine: Cyclohexanamine, N-cyclohexyl-; (101-83-7)

n-Butyllithium: Lithium, butyl-; (109-72-8)

Methyl isobutyrate: Propanoic acid, 2-methyl-, methyl ester; (547-63-7)

3-Bromoanisole: Benzene, 1-bromo-3-methoxy-; (2398-37-0)

Di-p-bromobis(tri-fert-butylphosphine)dipalladium; (185812-86-6)

Methyl 2-(3-methoxyphenyl)-2-methylpropanoate: Benzeneacetic acid, 3-
methoxy-o,a-dimethyl-, methyl ester; (32454-33-4)
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