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SYNTHESIS OF (+)-B-ALLYLDIISOPINOCAMPHEYLBORANE 

AND ITS REACTION WITH ALDEHYDES 

 

B
OMe

BrMg
+

Et2O

0 oC - rt

TBDPSO H

O

Me
 -78 oC - 25 oC

TBDPSO

OH

Me
+

Et2O

A.

B.

1

1 2 3

B

B

 
 
Submitted by Huikai Sun and William R. Roush.1 
Checked by David Hughes.2 

 
1. Procedure 

 

A. (+)-B-allyldiisopinocampheylborane ((+)-(Ipc)2B(allyl) or 

(
l
Ipc)2B(allyl)) (1). A 500-mL, 3-necked oven-dried round-bottomed flask 

equipped with a 3-cm oval Teflon-coated magnetic stir bar is fitted with a 
gas inlet adapter connected to a nitrogen line and a gas bubbler. The other 
two necks are capped with rubber septa; a thermocouple probe is inserted 
through one of the septa. (Note 1)  The flask is charged with (+)-B-
methoxydiisopinocampheylborane ((+)-(Ipc)2BOMe) (13.3 g, 42.1 mmol, 
1.25 equiv) (Note 2) and diethyl ether (45 mL), which results in a clear and 
colorless solution.  The solution is cooled to 3 °C in an ice/water bath and 
vigorously stirred. Allylmagnesium bromide solution (1.0 M in diethyl ether, 
40 mL, 40 mmol, 1.20 equiv) (Notes 2 and 3) is then added dropwise over 
20 min via a 60 mL disposable syringe with 18-gauge needle, maintaining 
the temperature below 6 °C. A large amount of white solids (presumably 
MgBr(OMe)) precipitate during the addition. After the addition is complete, 
the ice/water bath is removed, then the reaction mixture is vigorously stirred 
(Note 4) for 1 h at room temperature. The resulting (lIpc)2B(allyl) mixture in 
ether is used immediately in the next step without further purification (Note 
5). 
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B. (2R,3R)-1-(tert-Butyldiphenylsilyloxy)-2-methylhex-5-en-3-ol (3). 
The heterogeneous mixture of (lIpc)2B(allyl) generated in Step A is cooled to 
–75 °C with a dry ice/acetone bath under vigorous stirring, then a solution of 
(R)-3-(tert-butyldiphenylsilyloxy)-2-methylpropanal (2) (10.9 g, 33.4 mmol, 
1.00 equiv) (Note 6) in diethyl ether (25 mL) is added dropwise over 20 min 
via syringe (Note 7), maintaining the temperature below –70 °C.  The 
resulting mixture is vigorously stirred at –70 to –75 °C for 1.5 h (Note 8), 
then the dry ice/acetone bath is removed, and the reaction mixture is allowed 
to warm to room temperature (22 °C) over 1 h. The reaction mixture is 
cooled to 3 °C with an ice/water bath. A 125-mL gas equilibrating dropping 
funnel is attached to the flask, moving the gas adapter from one neck of the 
flask to the top of the dropping funnel.  A premixed solution of 3M NaOH 
(64 mL) and 30 % H2O2 (26 mL) (Note 9) is carefully added via the 
dropping funnel over 10 min (exothermic), keeping the temperature below 
15 °C, followed by addition of saturated aqueous NaHCO3 (80 mL) over 
3 min via the dropping funnel (Note 10). The resulting biphasic mixture is 
vigorously stirred for 10 h at room temperature (Note 11) to completely 
hydrolyze borinate ester products, then the organic phase is separated, and 
the aqueous phase is extracted with diethyl ether (2 x 80 mL). After the 
combined organic layers are washed with brine (2 x 50 mL), the ether 
solution is transferred to a 1-L round-bottomed flask, equipped with a 3-cm, 
egg-shaped Teflon-coated stir bar, then THF (150 mL), water (80 mL) and 
iron (II) sulfate heptahydrate salt (15.0 g) are added (Note 12). The flask is 
fitted with a gas inlet adapter connected to a nitrogen line and a gas bubbler. 
The resulting mixture is vigorously stirred for 14 h, then the organic phase is 
separated and the aqueous phase is extracted with diethyl ether (2 x 50 mL). 
The combined organic layers are washed with brine (2 x 50 mL), dried over 
100 g of anhydrous Na2SO4 and vacuum filtered through a medium porosity 
sintered-glass funnel. The filtrate is concentrated (40 °C bath temperature, 
100 mmHg initial to 20 mmHg) by rotary evaporation to give a light yellow 
residue (32 g), containing a 93 : 7 mixture of 3 and its anti diastereomer (5) 
(Note 13). This mixture is purified by column chromatography (Note 14) to 
provide 9.1 – 9.4 g (74 – 77%) of >98% pure (2R,3R)-1-(tert-
butyldiphenylsilyloxy)-2-methylhex-5-en-3-ol 3 (Note 15) as a colorless oil.  
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2. Notes 

 

 1.  The internal temperature was monitored using a J-Kem Gemini 
digital thermometer with a Teflon-coated T-Type thermocouple probe (12-
inch length, 1/8 inch outer diameter, temperature range –200 to +250 °C). 
 2.  (+)-B-Methoxydiisopinocampheylborane was purchased from 
Sigma-Aldrich and used as received. The submitters stored and transferred 
this material in the glove box.  The checker stored it in the freezer and 
weighed and transferred (rapidly) in open air. Diethyl ether (anhydrous, 
ACS reagent) and allylmagnesium bromide (1.0 M in diethyl ether, stored in 
refrigerator) were purchased from Sigma-Aldrich and used as received.  
 3.  The specified amounts of (+)-(Ipc)2BOMe (1.25 equiv) and 
allylmagnesium bromide  (1.20 equiv) are used in order to generate a 
sufficient amount of allylborane 1 to completely consume 1.0 equiv of 
aldehyde 2 in the allylboration step. Unreacted aldehyde (8-10%) remains at 
the end of the allylboration reaction when 1.0 equiv of both (+)-(Ipc)2BOMe 
and allylmagnesium bromide are used.  A slight excess of (+)-(Ipc)2BOMe is 
used over allylmagnesium bromide in order to ensure complete consumption 
of the latter before addition of the aldehyde; the submitters observed that the 
allylboration diastereoselectivity decreased by 1-2% if a slight excess of (+)-
(Ipc)2BOMe is not used. 
 4.  The stirring of the thick mixture should be vigorous but balanced. 
Solids that stick on the walls above the mixture may contain entrapped 
reagent, perhaps in the form of the ate complex indicated in equation 1, 3 and 
cannot be washed back into the reaction mixture.  In such cases, unreacted 
aldehyde is often observed after conclusion of the allylboration reaction.  
 

BB
Ipc

Ipc Ipc

OMe
Ipc

MgBr

equation 1
+ MgBr(OMe)

 
 

 5.  (-)-B-allyldiisopinocampheylborane ((-)-(Ipc)2B(allyl) or 
(dIpc)2B(allyl)), can be prepared using the same procedure starting from (-)-
B-methoxydiisopinocampheylborane ((-)-(Ipc)2BOMe). The (Ipc)2B(allyl) 
reagents are sensitive to air and moisture.  
 6.  (R)-3-(t-Butyldiphenylsilyloxy)-2-methylpropanal 2 was prepared 
(10.0 - 12.0 g scale) according to the procedure of Marshall et al.4 and 
obtained in 75–80% yield as a white solid following column 
chromatography with 3% EtOAc/hexanes with [ ]D

20 –26.4 (CHCl3, c = 1.8).   
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Aldehyde 2 was stored at –20 °C for up to 2 weeks prior to use without 
racemization (as determined by measuring its optical rotation and ee 
determination of the allylation product 3). 
 7.  An oven-dried, 100-mL, single-necked, round-bottomed flask was 
charged with (R)-3-(t-butyldiphenylsilyloxy)-2-methylpropanal 2 (10.9 g), 
then 25 mL of diethyl ether was added, and the mixture was swirled to 
completely dissolve the aldehyde. The resulting solution was transferred to 
the reaction mixture via a 40 mL disposable syringe with a 15 cm needle 
(18 gauge) over 20 min. Additional diethyl ether (2 x 5 mL) was used to 
rinse the flask and then was added to the reaction mixture over 1 min.  For 
the addition of the aldehyde solution to the cold reaction mixture, the tip of 
the syringe needle should be kept >5 cm above the surface and added at a 
steady rate to prevent crystallization of the aldehyde in the syringe. The 
submitters used a syringe pump for this addition.  
 8.  The progress of the reaction was monitored by 1H NMR 
spectroscopy monitoring the aldehyde proton at  9.8. (Typical procedure for 
1H NMR analysis: an aliquot of the reaction mixture was quickly transferred 
via a syringe to a small vial containing methanol (0.5 mL) at rt. The solvent 
was evaporated and the residue was dissolved in CDCl3.) 
 9.  30% H2O2 was purchased from Fisher Chemical Company, stored 
at 5 °C and used as received. 
 10.  The oxidative hydrolysis was not complete in 16 h at ambient 
temperature or under reflux without addition of the saturated NaHCO3 
solution.  The pH of the hydrolysis reaction mixture after bicarbonate 
addition was 11. 
 11.  The progress of the oxidative hydrolysis was monitored by 1H 
NMR spectroscopy using CDCl3 as solvent (An aliquot of the organic layer 
was evaporated to dryness and the residue dissolved in CDCl3.) Completion 
of the oxidative hydrolysis was indicated by disappearance of the mutiplet 
resonances of the internal olefin hydrogen (  5.78 – 5.68) and terminal olefin 
hydrogens (  5.05 – 4.95) in the intermediate borinate ester (e.g., ROBIpc2).  
In comparison, the chemical shift range of the multiplet of the corresponding 
olefinic hydrogens in the major product 3 are from  5.92 – 5.81 and 5.16 – 
5.09. The hydrolysis was complete within 1.5 h in the hands of the 
submitters but typically required 8-10 h for the checkers.  Agitation 
efficiency of the 3-phase mixture (aqueous, organic, solids) may affect the 
reaction rate.  
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 12.  Isopinocampheyl hydroperoxide 4 is produced in the reaction.  
This compound migrates with the syn product 3 on the TLC plate (EMD, 
silica gel, grade 60, F254) in this exemplified allylboration reaction, so the 
iron (II) sulfate reduction step is included to ensure that hydroperoxide 4 is 
completely consumed prior to product isolation.  A reference sample of 4 
was prepared by stirring a solution of Ipc2BOMe (1.0 g) in THF under air for 
1 h.  This solution was cooled to 0 °C and a premixed solution of 3 N NaOH 
(2.3 mL) and 30% H2O2 (0.9 mL) was added followed by sat. NaHCO3 
(3.0 mL) solution. The resulting mixture was vigorously stirred for 1.5 h. 
The organic phase was separated and hydroperoxide 4 was separated from 
isopinocampheol (1 : 4 mixture, respectively) by column chromatography 
using 1:10 Et2O-hexanes as eluent (Rf=0.5,  1:5 Et2O-hexanes, staining with 
PMA). 
 13.  The reaction diastereoselectivity was determined as follows.  A 
small sample of the crude reaction product (80 mg) was purified (collecting 
all fractions containing product with Rf = 0.4 to 0.5) by flash column 
chromatography (8 g silica gel) using ether/hexanes = 1/8 as the eluent to 
provide a mixture of three products.  This mixture was analyzed by the 
submitters using normal phase HPLC (5% EtOAc in hexanes, 1.0 mL/min, 
4.6 X 250 mm Varian column, UV detection at 254 nm; tR(3) = 16.2 min; 
tR(5) = 13.9 min; tR(6) = 13.0 min).  The checkers used a reverse phase assay 
to analyze diastereomeric ratios using an Agilent 1100 HPLC system; 
Ascentis Express C-18 fused-core column, 4.6 x 100 mm, 2.7 um particle 
size; 1.8 mL/min flow; temperature 40 °C; detection at 210 nm; gradient 
elution from 50/50 MeCN/water containing 0.1% H3PO4 to 95% MeCN/5% 
aq. over 14 min; tR (3) 9.6 min, tR (5) 9.8 min, tR (6) 11.6 min). The crude 
reaction product was determined to contain (2R,3R)-1-(t-
butyldiphenylsilyloxy-2-methylhex-5-en-3-ol (3) (90%), (2R,3S)-1-(t-
butyldiphenylsilyloxy)-2-methylhex-5-en-3-ol (5) (7%), and (2R, 3R)-1-(t-
butyldiphenylsilyloxy)-2-methyl-5-methyleneoct-7-en-3-ol (6) (3%).  The 
stereochemistry of the hydroxyl group of 6 is assumed, by analogy to the 
stereochemistry of the major product of the reaction (3).  A use test (by 
direct reaction with aldehyde 2) indicated that the solutions of 
allylmagnesium bromide in diethyl ether contain ca. 3% of 2-
((bromomagnesium)methyl)-1,4-pentadiene.   
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 14. The crude product was purified by three flash column 
chromatography steps owing to the difficulty of separating the syn 
diastereomer 3 from the anti diastereomer 5 and the byproduct 6.  The first 
chromatography was performed using 300 g of silica gel (Fisher, 230-
400 mesh, 60 Å) in a 5 cm diameter column using 10:1 hexanes-diethyl 
ether as the eluent (18-mL fractions).  All fractions were analyzed by TLC 
(1:10 Et2O-hexanes, 3 developments, staining with KMnO4 solution), as 
depicted  
 

The first 4 tubes (18 mL)
were shaved off, giving
0.7 g of a mixture of 3,
5 and 6.

Collection of intermediate
fractions containing 3, 5 
and 6 (7.3 g)

Developed 3 times with Et2O/hexanes = 1/10, stained with KMnO4 solution.

Collection of remaining 
tubes without visible anti 
product spots (3.4 g)

anti product 5

syn product 3

byproduct 6

 
 
graphically below.  Early fractions contained 0.7 g of a mixture of 5 and 
predominantly by-product 6. Late eluting fractions without detectable anti 
diastereomer 5 were pooled, giving 3.7 g of syn diastereomer 3.  The 
intermediate fractions, containing 8.1 g of a mixture of 3, 5 and 6 were 
pooled and subjected to a second chromatography as described above (250 g 
silica gel, 5 cm diameter column).  Early eluting fractions containing 
predominantly 5, 6 and a small amount of 3 were discarded.  Late eluting 
fractions, without detectable anti diastereomer 5 according to TLC analysis, 
were combined to give an additional 3.4 g of syn diastereomer 3.  The 
intermediate, mixed fractions, consisting of 4.5 g of a mixture of  3, 5 and 6 
were subjected to a third column chromatography (200 g of silica gel in a 



Org. Synth. 2011, 88, 87-101  93 

5 cm diameter column). This provided an additional 2.3 g of essentially pure 
syn diastereomer 3, along with 1.5 g (12% yield) of mixed fractions that 
consisted of mixture 3 (ca. 80%), 4 (ca. 20%) and 6 (ca. 1 %).  The latter 
fraction could be subjected to additional purification if desired.  The three 
main fractions of syn diastereomer 3 were combined, giving 9.4 g 
(77% yield) which contained 1.3% of anti diastereomer 5 and 0.2% of by-
product 6 according to HPLC analysis as described in note 13. 
 15.  The submitters obtained pure samples of 3, 5 and 6 by preparative 
HPLC for spectroscopic analysis (5% EtOAc in hexanes, 18.0 mL/min, 
21.4 x 250 mm Varian Dynamax column, Microsorb 60-8; tR(3) = 9.8 min; 
tR(5) = 9.1 min; tR(6) = 8.3 min). The enantiomers of both 3 and 5 have been 
synthesized and characterized previously.5 The checker prepared a mixture 
of the (2S, 3S) and (2S, 3R) diastereomers by the same protocol starting with 
(S)-3-(t-butyldiphenylsilyloxy)-2-methylpropanal and (+)-B-
methoxydiisopinocampheylborane, which produced a 78:22 mixture of (2S, 
3R):(2S, 3S) diastereomers.    
 The syn product 3 exhibits the following physical and spectroscopic 
properties: colorless oil; [ ]D

21 = +3.7 (c = 1.9, CHCl3); 
1H NMR (400 MHz, 

CDCl3) : 0.97 (d, J = 7.1 Hz, 3 H), 1.08 (s, 9 H), 1.77–1.82 (m, 1 H), 2.20–
2.33 (m, 2 H), 2.73 (d, J = 3.4 Hz, 1 H), 3.70 and 3.77 (ABX, J = 10.1, 4.3 
Hz, 2 H), 3.92–3.97 (m, 1 H), 5.09–5.16 (m, 2 H), 5.81–5.92 (m, 1 H), 7.30–
7.48 (m, 6 H), 7.67–7.71 (m, 4 H); 13C NMR (125 MHz, CDCl3) : 10.5, 
19.4, 27.1, 39.1, 39.3, 68.7, 73.5, 117.3, 128.0, 130.00, 130.04, 133.2, 133.4, 
135.79, 135.81, 135.9; IR (KBr) 3468, 2955, 2858, 1606, 1515, 1471, 1427, 
1112, 701 cm-1; LC-MS calcd for [M+Na]+ (C23H32NaO2Si) 391.6, found, 
391.7 m/z. Purity by reverse phase HPLC was >98% (see note 13 for 
method), tR (3) 9.6 min (98.3%); tR (5) 9.8 min (1.3%); tR (6) 11.6 min 
(0.2%); tR 9.1 min (unknown, 0.2%). A reverse phase chiral HPLC assay 
was developed to separate the (2S, 3S) and (2R, 3R) enantiomers: OJ-RH 
(150 x 4.6mm, 5um) isocratic 60% MeCN (pH 3.5, 2mM ammonium 
formate), 40% aqueous (pH 3.5, 2mM ammonium formate), 0.75mL/min, 
ambient temp, 215 nm, 20 min method time; tR(3) (2R, 3R) 11.5 min; tR  (2S, 
3S) 13.2 min; tR  (5) (2R, 3S) and (2S, 3R) co-elute 12.5 min. The 
enantiomeric purity of 3 was 99.0% indicating that aldehyde 2 did not 
racemize during its preparation and application in the exemplified 
procedure.  An analytical sample of 3 was prepared by dissolving ~100 mg 
of the product from the pooled chromatographies in 5 mL of diethyl ether, 
filtering through a 0.45 micron PTFE syringe filter, and concentrating to 
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dryness under vacuum for 16 h. Anal. calcd. for C23H32O2Si: C, 74.95; H, 
8.75; found: C, 74.85; H, 8.78.   
 The anti product 5 exhibits the following physical and spectroscopic 

properties: colorless oil; [ ]D
21 = –2.6 (c = 0.7, CHCl3); 

1H NMR (400 MHz, 
CDCl3) : 0.85 (d, J = 6.8 Hz, 3 H), 1.06 (s, 9 H), 1.80–1.84 (m, 1 H), 2.17–

2.23 (m, 1 H), 2.34–2.39 (m, 1 H), 3.49 (d, J = 3.2 Hz, 1 H), 3.65 and 3.77 
(ABX, J = 10.0, 4.4 Hz, 2 H), 3.65–3.73 (m, 1 H), 5.10–5.15 (m, 2 H), 5.88–

5.98 (m, 1 H), 7.38–7.45 (m, 6 H), 7.67–7.69 (m, 4 H); 13C NMR (100 MHz, 
CDCl3) : 13.4, 19.1, 26.8, 39.4, 39.5, 68.6, 75.1, 117.2, 127.8, 129.8, 132.9, 
135.3, 135.6, 135.7; IR (KBr) 3496, 2959, 2930, 2858, 1589, 1472, 1427, 
1390, 1112, 701 cm-1; LC-MS calcd for [M+Na]+ (C23H32NaO2Si) 391.6, 
found, 391.7 m/z. 
 The side product 6 exhibits the following physical and spectroscopic 
properties: colorless oil; 1H NMR (400 MHz, CDCl3) : 0.93 (d, J = 6.8 Hz, 
3 H), 1.07 (s, 9 H), 1.76–1.80 (m, 1 H), 2.20–2.28 (m, 2 H), 2.49 (d, J = 3.6 
Hz, 1 H), 2.82 (d, J = 6.8 Hz, 2 H), 3.68 and 3.73 (ABX, J = 10.4, 4.8 Hz, 
2 H), 4.04–4.07 (m, 1 H), 4.90 (d, J = 0.8 Hz, 2 H), 5.05–5.10 (m, 2 H), 
5.78-5.88 (m, 1 H), 7.38–7.46 (m, 6 H), 7.66–7.70 (m, 4 H); 13C NMR 
(100 MHz, CDCl3) : 10.4, 19.2, 26.9, 39.3, 40.6, 41.1, 68.0, 70.8, 112.9, 
116.5, 127.7, 129.7, 129.8, 133.1, 133.3, 135.6, 135.7, 136.1, 145.3; IR 
(KBr) 3400, 2928, 2859, 1607, 1515, 1470, 1463, 1455, 1112, 822, 702, 505 
cm-1; LC-MS calcd for [M+Na]+ (C26H36NaO2Si) 431.6, found, 431.6 m/z. 
 Isopinocampheyl hydroperoxide 4 exhibits the following physical and 
spectroscopic properties: colorless oil; [ ]D

21 = + 33.2 (c = 0.7, CHCl3); 
1H NMR (400 MHz, CDCl3) : 0.92 (s, 3 H), 1.01 (d, J = 9.6 Hz, 1 H), 1.17 
(d, J = 7.2 Hz, 3 H), 1.22 (s, 3 H), 1.79–1.86 (m, 2 H), 1.90–1.95 (m, 1 H), 
2.00–2.03 (m, 1 H), 2.30–2.42 (m, 2 H), 4.27 (ddd, J = 3.6, 4.4 and 8.8 Hz, 
1 H), 7.73 (s, 1 H); 13C NMR (100 MHz, CDCl3) : 1.41, 23.61, 27.30, 
32.48, 33.56, 38.40, 40.87, 42.14, 47.24, 84.99; IR (KBr) 3391, 2908, 1453, 
1367, 1158, 1035 cm-1; LC-MS calcd for [M-H2O]+ (C10H18O2) 152.1, found, 
152 m/z. This compound is readily reduced by Fe2SO4 to give 
isopinocampheol. 

 
Safety and Waste Disposal Information 

 

 All hazardous materials should be handled and disposed of in 
accordance with “Prudent Practices in the Laboratory”; National Academy 
Press; Washington, DC, 1995. 
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3. Discussion 

 
Chiral allylmetal reagents are valuable intermediates in organic 

synthesis, and are especially useful for the synthesis of enantioenriched 
homoallylic alcohols.6 Since the first chiral allylborane reagent was reported 
by Hoffman in 1978,7 many more efficient and practical chiral allylmetal 
reagents or allylmetallation procedures have been reported, 6 including those 
by Brown,8 Roush,5,9 Corey,10 Leighton,11 Denmark,12 Soderquist,13 Hall14 
and Krische.15  The present enantioselective aldehyde allylation procedure 
developed by Brown and his coworkers is one of the most widely adopted 
methods as it employs commercially available (+)-(Ipc)2BOMe and 
commercially available allylmagnesium bromide for synthesis of the 
(lIpc)2B(allyl) reagent;8b the enantiomeric (dIpc)2B(allyl) species can be 
accessed from commercially available (-)-(Ipc)2BOMe by using the same 
protocol. 

 The (Ipc)2B(allyl) reagents were prepared in Brown’s original 
procedure8b by treating (Ipc)2BOMe with allylmagnesium bromide at –78 oC 
and then allowing the reaction mixture to warm to rt over 1 h. The procedure 
described herein follows an alternative protocol subsequently published by 
Brown, in which allylmagnesium bromide is added to a solution of 
(Ipc)2BOMe in diethyl ether at 0 oC and then stirring the reaction mixture at 
rt for 1 h.3  The allylboration of aldehydes can be performed after removal of 
the magnesium salts by filtration under an inert atmosphere (salt free 
procedure), which is reported to provide much improved 
enantioselectivites.3  However, the procedure described here,  by performing 
the allylboration in the presence of the magnesium salts, is more convenient 
as it avoids filtration and extra manipulations of the moisture and air 
sensitive allylborane species.  

We found that use of slight excesses of both (Ipc)2BOMe (1.25 equiv) 
and allylmagnesium bromide (1.2 equiv) were needed in order to achieve 
complete allylboration of aldehyde 2. Generally, the secondary alcohol 
products can be isolated following oxidative hydrolytic workup by treating 
the intermediate borinate esters with a solution of 3 N sodium hydroxide and 
30% hydrogen peroxide under reflux for several hours or at rt for 16 h. 
However, we found that the hydrolysis did not proceed to completion in the 
allylboration reaction reported here unless a solution of sat. sodium 
bicarbonate was also added. These optimized workup conditions not only 
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resulted in complete oxidative hydrolysis in 10 h at room temperature, but 
also led to formation of two clear phases that facilitated the separation 
process.  The submitters also found that isopinocampheyl hydroperoxide 4 is 
produced in 4-6% yield.  While the origin of 4 has not been rigorously 
established, it seems likely that it arises via a radical process when the 
borinate ester intermediates are exposed to O2 during reaction workup.16  
Hydroperoxide 4 is difficult to separate from syn product 3 in this 
exemplified reaction, so the submitters further modified the reaction workup 
by addition of an aqueous solution of iron (II) sulfate to reduce 
hydroperoxide 4 before product purification via column chromatography.17  

The submitters also identified (2R, 3R)-1-(tert-butyldiphenylsilyloxy)-
2-methyl-5-methyleneoct-7-en-3-ol (6, 3% according to HPLC analysis) as a 
by-product of this procedure. A use test (by direct reaction with aldehyde 2) 
indicated that the solutions of allylmagnesium bromide in diethyl ether 
contains ca. 3% of 2-((bromomagnesium)methyl)-1,4-pentadiene.  
Production of analogous products deriving from 2-
((bromomagnesium)methyl)-1,4-pentadiene as a contaminant of 
allylmagnesium bromide have not been described in the literature, to the best 
of the knowledge of the submitters.  Whether the formation of this by-
product can be avoided by using freshly prepared allylmagnesium bromide 
has not been determined.   

Reactions of (Ipc)2B(allyl) reagents with achiral aldehydes are reported 
to furnish the corresponding secondary homoallylic alcohols with 80 to 95% 
enantiomeric excess, as shown in Table 1. The substrate scope has been 
extended in the literature to a large number of aliphatic aldehydes, aromatic 
aldehydes and , -unsaturated aldehydes.6f  
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Table 1. Allylboration of achiral aldehydes with (dIpc)2B(allyl) or 
(lIpc)2B(allyl) 

Entry aldehydes (Ipc)2B(allyl) product ee (%) yield (%)a

1
O

(dIpc)2B(allyl)

OH

93 74

H
2 (dIpc)2B(allyl)

OH

86 71

3 (dIpc)2B(allyl)

OH

90 86

4 (dIpc)2B(allyl)

OH

83 88

5 (dIpc)2B(allyl)

OH

96 81

6 (dIpc)2B(allyl)

HO

92

8b
(dIpc)2B(allyl)c

OH

80 78

13

9b

(lIpc)2B(allyl)c
OH

84 80

13

O

H

H

O

O

H

O

H

O

H

O

13
H

H

O

13

no

reported

yield

a Isolated yields; b see reference 18; c (Ipc)2B(allyl) was prepared from the 

corresponding (Ipc)2BCl  
 

 Allylboration of -chiral aldehydes with (Ipc)2B(allyl) reagents are also 
reported to produce secondary homoallylic alcohols in excellent 
diastereoselectivity and in good to excellent yields as shown in Table 2.8c,19 
In most cases (entries 1-3), with aldehyde substrates with very modest 
diastereofacial biases, the facial selectivity of the reaction is completely 
reversed upon switching the chirality of the chiral allylborane reagents. 
Numerous other applications of the use of the (Ipc)2B(allyl) reagents in 
matched and mismatched double asymmetric reactions with chiral aldehydes 
are summarized in the cited review literature.6a,6f 
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Table 2. Allylboration of -chiral aldehydes with (dIpc)2B(allyl) or 

(lIpc)2B(allyl) 

H

BzO H BzO

H

OBz

H
Ph

O

O

O

O

OBz

Ph

OH

OH

OH

OH

BzO

OBz

Ph

OH

OH

OH

OH

(dIpc)2B(allyl)

(lIpc)2B(allyl)

67 33

982

(dIpc)2B(allyl)

(lIpc)2B(allyl)

94 6

964

(dIpc)2B(allyl)

(lIpc)2B(allyl)

96 4

982

(dIpc)2B(allyl)

(lIpc)2B(allyl)

96 4

955

68%

70%

80%

75%

80%

78%

81%

83%

1

2

3

4

Entry aldehyde conditions diastereomeric products/ratio yield
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Appendix 

Chemical Abstracts Nomenclature; (Registry Number) 

 
(+)-B-Allyldiisopinocampheylborane ((+)-(Ipc)2B(allyl) or (lIpc)2B(allyl)); 

(106356-53-0) 
(+)-B-Methoxydiisopinocampheylborane ((+)-(Ipc)2BOMe); (99438-28-5) 
Allylmagnesium bromide; (1730-25-2) 
(R)-3-(t-Butyldiphenylsilyloxy)-2-methylpropanal: Propanal, 3-[[(1,1-

dimethylethyl)diphenylsilyl] oxy]-2-methyl-, (2R)-; (112897-04-8) 
Hydrogen peroxide; (7722-84-1) 
(1R,2R,3R,5S)-2,6,6-Trimethylbicyclo[ 3.1.1 ]heptan-3-ol; (+)-

isopinocampheol; (24041-60-9) 
(2R,3R)-1-(t-Butyldiphenylsilyloxy)-2-methylhex-5-en-3-ol 
(2R,3S)-1-(t-Butyldiphenylsilyloxy)-2-methylhex-5-en-3-ol 
(2R,3R)-1-(t-Butyldiphenylsilyloxy)-2-methyl-5-methyleneoct-7-en-3-ol 
(1S,2S,3S,5R)-3-hydroperoxy-2,6,6-trimethylbicyclo[3.1.1]heptane; (+)-

isopinocampheylperoxide 
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