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PREPARATION OF HORNER-WADSWORTH-EMMONS 
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1. Procedure 

 

A. -Hydroxy-N-benzyloxycarbonylglycine. A 500-mL three-necked 

round-bottomed flask equipped with an overhead mechanical stirrer (teflon 

paddle, 75 x 20 mm), a glass stopper, and a reflux condenser fitted with an 

inert gas inlet (Note 1) is charged with benzyl carbamate (30.23 g, 200 mmol, 

1.0 equiv) (Note 2) and glyoxylic acid monohydrate (20.25 g, 220 mmol, 

1.1 equiv) (Note 3). The flask is evacuated and backfilled with inert gas, the 

glass stopper is removed under a stream of inert gas and the flask is charged 

with anhydrous Et2O (200 mL) (Note 4). The resulting translucent solution 

is heated under reflux for 12 h (Note 5) with stirring at a rate of 200 rpm. 

Over this time, the product precipitates to give a white suspension. The 

white precipitate is collected by filtration, washed with hexanes-Et2O (1:1) 

(6 x 10 mL) (Note 6), and dried in vacuo to yield 

-hydroxy-N-benzyloxycarbonylglycine as fine white crystals 
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(32.80–35.37 g, 73–79%) (Note 7). 

B. Methyl -methoxy-N-benzyloxycarbonylglycinate. A 1-L one-necked, 

round-bottomed flask equipped with a Teflon-coated magnetic stir bar 

(octagonal, 38 mm) is charged with -hydroxy-N-benzyloxycarbonylglycine 

(22.52 g, 100 mmol, 1.0 equiv) and anhydrous MeOH (200 mL) (Note 8). 

An inert gas inlet is attached (Note 1), and the flask is cooled to 1 °C 

(internal temperature). The gas inlet is temporarily removed and to the 

translucent solution is added conc. H2SO4 (5.0 mL) (Note 9) with a pipette 

over 5 min. The gas inlet is replaced, the cooling bath is then removed, and 

the mixture is stirred at room temperature for 15 h (Note 10). The reaction 

mixture is cooled to 1 °C (internal temperature) to which is added sat. aq. 

NaHCO3 (120 mL) (Note 11) accompanied with vigorous gas evolution. The 

pH of the solution after addition is determined to be ca. 7. Methanol is 

removed under reduced pressure on a rotary evaporator (30 °C, 40 mmHg), 

and the residue is transferred into a 300-mL separatory funnel with the aid of 

water (50 mL) and EtOAc (200 mL). After partitioning, the aqueous layer is 

extracted with EtOAc (2 x 200 mL). The combined organic extracts are 

transferred into a 1-L separatory funnel and are washed with sat. aq. NaCl 

(1 x 200 mL), dried over MgSO4 (20 g), and filtered (washing with 2 x 

20 mL of EtOAc). The filtrate is concentrated under reduced pressure on a 

rotary evaporator (30 °C, 40 mmHg) and the residue is thoroughly dried in 

vacuo to give methyl -methoxy-N-benzyloxycarbonylglycinate as a white 

solid (24.26–24.56 g, 96–97%) (Note 12). 

 C. Methyl 2-benzyloxycarbonylamino-2-(dimethoxyphosphinyl)acetate. 

A 500-mL flame-dried, two-necked, round-bottomed flask (Note 13) 

equipped with a Teflon-coated magnetic stir bar (octagonal, 38 mm), a 

rubber septum, and an inert gas inlet (Note 1) is charged with methyl 

-methoxy-N-benzyloxycarbonylglycinate (20.27 g, 80.0 mmol, 1.0 equiv). 

The flask is evacuated and backfilled with inert gas. The flask is charged 

with anhydrous toluene (80 mL) (Note 14), and the resulting solution is 

heated at 70 °C. Phosphorus trichloride (6.98 mL, 11.0 g, 80.0 mmol, 

1.0 equiv) (Note 15) is added to the solution over 5 min via a syringe. After 

stirring at 70 °C for 26 h (Note 16), trimethyl phosphite (9.44 mL, 9.93 g, 

80.0 mmol, 1.0 equiv) (Note 17) is added to the mixture over 5 min via a 

syringe. The resulting mixture is stirred at 70 °C for an additional 2 h (Note 

18). All volatile materials are removed under reduced pressure (40 then 

10 mmHg, bath temperature: 70 °C) in a general distillation apparatus (a 

distillation head, a distillation adapter, and a receiver flask) to give a yellow 
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viscous oil. The oil is transferred into a 300-mL separatory funnel with the 

aid of EtOAc (100 mL). The solution is washed with sat. aq. NaHCO3 (3 x 

50 mL). The combined aqueous washings are extracted with EtOAc (1 x 

50 mL). The combined organic extracts are washed with sat. aq. NaCl (1 x 

50 mL), dried over Na2SO4 (10 g), filtered (washing with 10 mL EtOAc), 

and concentrated on a rotary evaporator under reduced pressure (30 °C, 

40 mmHg) to give a pale yellow oil (27.26 g). Upon addition of hexanes 

(40 mL) to the oil with vigorous stirring at room temperature, a white solid 

precipitates which is collected by filtration, washed with ice-cold hexanes 

(5 x 20 mL), and dried in vacuo to afford methyl 

2-benzyloxycarbonylamino-2-(dimethoxyphosphinyl)acetate as a fine white 

powder (22.59–23.08 g, 85–87%) (Note 19). 

 

2. Notes 

 

1. The use of either argon or nitrogen had no impact on the yield of 

the reaction. 

2. Benzyl carbamate (99%) was purchased from Sigma-Aldrich Co. 

and used as received without further purification. 

3.  Glyoxylic acid monohydrate (98%) was purchased from 

Sigma-Aldrich Co. and used as received without further purification. 

4. Et2O (puriss., dried over molecular sieves, 0.005% H2O) was 

purchased from Sigma-Aldrich Co. and used as received without further 

purification (submitters used >99.5%, water content: <0.05% from Kanto 

Chemical Company, Inc). 

5. The submitters observed an incomplete reaction at 12 h and longer 

reaction time and/or higher reaction temperature did not improve the 

conversion.  

6. Concentration of the combined washings gave 13.35 g of the 

desired product: hydroxy-N-benzyloxycarbonylglycine, with a trace of 

glyoxylic acid monohydrate. 

7. The submitters report a yield of 58%. Data for product (without 

further purification): Rf = 0.60 (H2O-MeOH-n-BuOH-EtOAc = 1:1:1:2; 

Merck silica gel 60F-254 aluminium-backed plates; visualized at 254-nm 

and with an ethanol solution of Ce2(SO4)3 and phosphomolybdic acid 

followed by heating); mp = 198–200 °C (Et2O); IR (film): 3333, 3039, 2946, 

1732, 1694, 1542, 1536, 1454, 1340, 1266, 1246, 1085 cm
1
; 

1
H NMR 

(400 MHz, DMSO-d6) : 5.05 (s, 2 H), 5.22 (d, J = 8.8 Hz, 1 H), 7.27–7.41 
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(m, 5 H), 8.13 (d, J = 8.8 Hz, 1 H); The submitters report an additional 
1
H NMR resonance at 6.26 (br s, 1 H); 

13
C NMR (100 MHz, DMSO-d6) : 

66.2, 73.9, 128.5 (2  C), 128.5, 129.0 (2  C), 137.5, 156.2, 171.7; HRMS. 

[M + H]+ calcd. for C10H12NO5: 226.0715. Found: 226.0716; Anal. calcd. 

for C10H11NO5: C, 53.33; H, 4.92; N, 6.22. Found: C, 53.20; H, 5.27; N, 

6.14. 

8. Methanol (puriss., absolute, dried over molecular sieves, 0.01% 

H2O) was purchased from Sigma-Aldrich Co. and used as received without 

further purification (submitters used 99.8%, water content: <50 ppm from 

Wako Pure Chemical Industries, Ltd.). 

9. Conc. H2SO4 (95.0–98.0%) was purchased from Caledon 

Laboratories Ltd. and used as received without further purification 

(submitters used 95.0% from Wako Pure Chemical Industries, Ltd.). 

10. The reaction typically requires 15 h to consume all the 

-hydroxy-N-benzyloxycarbonylglycine and is monitored by TLC analysis. 

The Rf values of the starting material and the product are baseline and 0.71, 

respectively (CH2Cl2-MeOH = 19:1; Merck silica gel 60F-254 

aluminium-backed plates; visualized at 254-nm and with an ethanol solution 

of Ce2(SO4)3 and phosphomolybdic acid followed by heating). 

11. The submitters sometimes observed the solidification of the 

reaction mixture upon cooling to 0 °C. In this situation, the reaction mixture 

is warmed to room temperature and ice-cold sat. aq. NaHCO3 (0 °C) is 

added at room temperature. 

12. Data for product (without further purification): Rf = 0.40 

(hexanes-EtOAc = 2:1; Merck silica gel 60F-254 aluminium-backed plates; 

visualized at 254-nm and with an ethanol solution of Ce2(SO4)3 and 

phosphomolybdic acid followed by heating); mp = 70–72 °C (EtOAc); IR 

(film): 3310, 3035, 2947, 1752, 1716, 1686, 1542, 1455, 1439, 1362, 1259, 

1221, 1197, 1103 cm
1
; 

1
H NMR (400 MHz, CDCl3) : 3.47 (s, 3 H), 3.81 (s, 

3 H), 5.14 (d, J = 12.3 Hz, 1 H), 5.17 (d, J = 12.3 Hz, 1 H), 5.36 (d, J = 

9.4 Hz, 1 H), 5.84 (br s, 1 H), 7.31–7.39 (m, 5 H); 
13

C NMR (100 MHz, 

CDCl3) : 52.8, 56.2, 67.4, 80.6, 128.1, 128.3, 128.5, 135.7, 155.6, 167.9; 

HRMS. [M + Na]
+
 calcd. for C12H15NNaO5: 276.0848. Found: 276.0846; 

Anal. calcd. for C12H15NO5: C, 56.91; H, 5.97; N, 5.53. Found: C, 56.83; H, 

6.21; N, 5.56. 

13. The use of an oversize flask allows for the removal of the reagents 

and solvent at the end of the reaction without the loss of product through 

bumping. 
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14. Toluene (dried max. 0.001% H2O, puriss.) was purchased from 

Sigma-Aldrich Co. and used as received without further purification 

(submitters used 99.5%, water content: <30 ppm from Wako Pure Chemical 

Industries, Ltd.). 

15. Phosphorus trichloride (ReagentPlus, 99%) was purchased from 

Sigma-Aldrich Co. and used as received without further purification 

(submitters used 99.0% from Wako Pure Chemical Industries, Ltd.). 

16. The reaction typically requires 22–26 h to consume all the methyl 

-methoxy-N-benzyloxycarbonylglycinate and is monitored by TLC 

analysis. The Rf values of the starting material and the intermediate are 0.71 

and 0.50, respectively (CH2Cl2-MeOH = 19:1; Merck silica gel 60F-254 

aluminium-backed plates; visualized at 254-nm and with an ethanol solution 

of Ce2(SO4)3 and phosphomolybdic acid followed by heating). The 

intermediate of the reaction is methyl N-benzyloxycarbonyl- 

-chloroglycinate. A small amount of the reaction mixture was concentrated 

in vacuo and analyzed by 
1
H spectroscopy: 

1
H NMR (400 MHz, CDCl3) : 

3.86 (s, 3 H), 5.10–5.24 (m, 2 H), 6.18 (br s, 1 H), 7.32–7.40 (m, 5 H).
3
 

17. Trimethyl phosphite (>99%) was purchased from Sigma-Aldrich 

Co. and used as received without further purification. 

18. The reaction typically requires 2 h to consume all the intermediate 

and is monitored by TLC analysis. The Rf values of the intermediate and the 

product are 0.50 and 0.45, respectively (CH2Cl2-MeOH = 19:1; Merck silica 

gel 60F-254 aluminium-backed plates; visualized at 254-nm and with an 

ethanol solution of Ce2(SO4)3 and phosphomolybdic acid followed by 

heating). 

19. Data for product (without further purification): Rf = 0.45 (EtOAc; 

Merck silica gel 60F-254 aluminium-backed plates; visualized at 254-nm 

and with an ethanol solution of Ce2(SO4)3 and phosphomolybdic acid 

followed by heating); mp = 77–78 °C (hexanes); IR (film): 3229, 3034, 2963, 

1749, 1716, 1535, 1427, 1332, 1277, 1240, 1213, 1030 cm
–1

; 
1
H NMR 

(400 MHz, CDCl3) : 3.79 (d, 
3
JH-P = 11.0 Hz, 3 H), 3.82 (d, 

3
JH-P = 11.2 Hz, 

3 H), 3.84 (s, 3 H), 4.93 (dd, 
2
JH-P = 22.3, J = 9.2 Hz, 1 H), 5.16 (d, J = 

12.0 Hz, 1 H), 5.16 (d, J = 12.0 Hz, 1 H), 5.58 (d, J = 9.6 Hz, 1 H), 

7.31–7.39 (m, 5 H); 
13

C NMR (100 MHz, CDCl3) : 52.0 (d, 
1
JC-P = 148 Hz), 

53.3, 53.9 (d, 
2
JC-P = 6.8 Hz), 54.1 (d, 

2
JC-P = 6.5 Hz), 67.5, 128.1, 128.3, 

128.5, 135.8, 155.5 (d, 
3
JC-P = 7.2 Hz), 167.1; HRMS. [M + H] calcd. for 

C13H19NO7P: 332.0899. Found: 332.0905; Anal. calcd. for C13H18NO7P: C, 

47.14; H, 5.48; N, 4.23. Found: C, 47.51; H, 5.74; N, 4.34. 
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Waste Disposal Information 

 

All hazardous materials should be handled and disposed of in 

accordance with “Prudent Practices in the Laboratory”; National Academic 

Press; Washington, DC, 1995. 

 

3. Discussion 

 

The Horner-Wadsworth-Emmons (HWE) olefination
4
 has the 

following advantages over the Wittig reaction; 1) the phosphonate 

carbanions are more nucleophilic than phosphorus ylides, and even 

unreactive hindered ketones react readily in HWE olefinations; 

2) water-soluble phosphonate byproducts facilitate the purification process; 

and 3) the product olefin geometry can be switched by the 

Corey-Kwiatkowski modification,
4a,5

 the Still-Gennari modification,
4b,6

 or 

the Ando modification.
7
 

The present procedure describes a convenient and scalable preparation 

of the HWE reagent
8
 that gives the (Z)-dehydroamino acid derivative, which 

allows facile access to Cbz-protected -amino acid methyl esters via 

Rh-catalyzed enantioselective hydrogenation
9
 (Scheme 1).  
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Scheme 1. Preparation of tryptophan derivative 

 

The Cbz group in the HWE reagent is converted to a variety of 

protecting groups via hydrogenolysis followed by acylation
8b 

(Table 1). 
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Table 1. Preparation of a series of related HWE reagents 
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Ac2O, MeOH, rt, 91%a
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MeOH, rt, 87%

–

a Debenzylation and acylation were carried out in one pot without isolation 

of the primary amine.  

 

Recently, Ohfune and Shinada reported modified synthesis of a new 

Ando-type HWE reagent 1 providing an (E)-encarbamate.
10

 The reagent was 

prepared from a hemiaminal, the product of step B in this procedure, by 

treatment with P(OPh)3 and TMSOTf. Treatment of benzaldehyde with 

phosphonate 1 provided the corresponding (E)-dehydrophenylalanine 

derivative with excellent stereoselectivity (97:3). Their (–)-kaitocephalin 

synthesis features a substrate-controlled diastereoselective hydrogenation of 

(E)-enamide 2 prepared from the corresponding phosphonate 3 readily 

prepared from 1 (Scheme 2). 
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Scheme 2. Total synthesis of (–)-kaitocephalin featuring (E)-selective 

olefination and substrate-controlled diastereoselective 

hydrogenation 
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Appendix 

Chemical Abstracts Nomenclature (Registry Number) 

 

Benzyl carbamate: Carbamic acid, Phenylmethyl ester; (621-84-1) 

Glyoxylic acid monohydrate: Acetic acid, 2,2-dihydroxy-; (563-96-2) 

Sulfuric acid: Sulfuric acid; (7664-93-9) 

Phosphorous trichloride: Phosphorous trichloride; (7719-12-2) 

Trimethylphosphite: Phosphorous acid, trimethyl ester; (121-45-9) 
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