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Working with Hazardous Chemicals 
 

The procedures in Organic Syntheses are intended for use only by persons with proper 
training in experimental organic chemistry.  All hazardous materials should be handled 
using the standard procedures for work with chemicals described in references such as 
"Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 
2011; the full text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste should be 
disposed of in accordance with local regulations.  For general guidelines for the 
management of chemical waste, see Chapter 8 of Prudent Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red 
“Caution Notes” within a procedure.  It is important to recognize that the absence of a 
caution note does not imply that no significant hazards are associated with the chemicals 
involved in that procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards associated with each 
chemical and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards associated 
with chemicals can be found in Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as published and are 
conducted at one's own risk.  Organic Syntheses, Inc., its Editors, and its Board of 
Directors do not warrant or guarantee the safety of individuals using these procedures and 
hereby disclaim any liability for any injuries or damages claimed to have resulted from or 
related in any way to the procedures herein. 

September 2014: The paragraphs above replace the section “Handling and Disposal of Hazardous 
Chemicals” in the originally published version of this article.  The statements above do not supersede any 
specific hazard caution notes and safety instructions included in the procedure. 

Copyright © 2011 Organic Syntheses, Inc.  All Rights Reserved 
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 The cross-coupling reactions of organoboronic acids have proved to 

be a general reaction for a wide range of selective carbon-carbon bond 

forming reactions in laboratories and in industry since they involve 

convenient reagents that are generally thermally stable and inert to water and 

oxygen, thus allowing handling without special precautions.  These reactions 

have been reviewed.
1
 

 

Synthesis of 1-Alkenylboron Compounds 

 

 Hydroboration of alkynes is especially valuable in the synthesis of 

stereodefined 1-alkenylboron compounds.  Disiamylborane (HB(Sia)2), 

dicyclohexylborane, and 9-BBN are very mild and selective hydroboration 

reagents to obtain 1-alkenylboranes.  The addition of catecholborane 

(HBcat)
2
 or dihaloborane (HBCl2·SM2, HBBr2·SMe2)

3
 to alkynes followed 

by hydrolysis with water is a method for the synthesis of air-stable 1-

alkenylborinic acids (3).  Since hydroboration yields (E)-adducts through the 

anti-Markovnikov and syn-addition of an H-B bond to terminal alkynes, (Z)-

1-alkenylboronates have been synthesized by a two-step method based on 

intramolecular SN2-type substitution of 1-halo-1-alkenylboronates with 

metal hydrides
4
 or cis-hydrogenation of 1-alkynylboronates.

5
  

Rhodium(I)/
i
Pr3P-catalyzed hydroboration is a new variant for the one-step 
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synthesis of (Z)-1-alkenylboron compounds (6) from terminal alkynes.
6
  On 

the other hand, the palladium-catalyzed borylation of 1-alkenyl halides or 

triflates with bis(pinacolato)diboron provides (Z)-1-alkenylboronic pinacol 

esters.
7
  The pinacol esters (5, 6) are advantageous over the boronic acids 

with regard to the preparation and handling of pure and stable materials 

since they are stable to air and moisture, GC analysis, and chromatographic 

isolation on silica gel.  Treatment of boronic acids with KHF2 results in 

spontaneous precipitation of stable and highly insoluble [1-alkenylBF3]K 

(4).
8,18 

 All of those derivatives have been successfully used for various 

cross-coupling reactions. 
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Cross-Coupling Conditions (Table 1) 

 

Cross-coupling reactions of 1-alkenylboron compounds with 1-alkenyl 

halides require a relatively strong base in the presence of a 

palladium/phosphine catalyst.  The relative rate is in the order of their basic 

strength and affinity of the counter cations for halide anions (TlOH > KOH 

> K3PO4 > Na2CO3 > NaOAc).  Aqueous NaOH has been used for 1-

alkenylboronic acids or esters in refluxing THF-H2O, DME-H2O (entry 3), 
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or benzene-H2O (entry 6) and aqueous LiOH (entry 2) for disiamylborane 

derivatives.  In spite of its toxicity, TlOH is an excellent base that enables 

completion of the coupling within one hour at room temperature (entry 4).  

Since an aqueous solution of TlOH precipitates brown-black solids under 

careful storage conditions, addition of TlOEt to aqueous THF was recently 

recommended as a suitable replacement for air-sensitive TlOH (entry 5). 

 
Table 1. Conditions for Alkenyl-Alkenyl (sp

2
-sp

2
) Coupling

catalyst

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4
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Synthetic Applications 

 

Alkenyl-alkenyl cross-coupling affords various stereodefined dienes, 

trienes, and further conjugated polyenes for the synthesis of biologically 

active natural products,
1
 including palytoxine,

19
 (-)-bafilomycin A1,

20
 a 

combinatorial synthesis of vitamin D3 derivatives,
21

 a macrolide antibiotic, 

rutamycin B,
22

 and 5,6-DiHETE Methyl Esters.
23
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