

A Publication of Reliable Methods for the Preparation of Organic Compounds

Working with Hazardous Chemicals

The procedures in *Organic Syntheses* are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full accessed of charge text can be free at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.

The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.,* its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

September 2014: The paragraphs above replace the section "Handling and Disposal of Hazardous Chemicals" in the originally published version of this article. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.

Reagent for Divalent Sulfur Protection: Preparation of 4-Methylbenzenesulfonothioic Acid, S-[[[(1,1-Dimethylethyl)-Dimethylsilyl]oxy]methyl] Ester

Submitted by Lihong Wang and Derrick L. J. Clive.¹ Checked by David Hughes.

1. Procedure

Caution: Steps A and B must be conducted in an efficient fumehood.

A. *(Ethylthio)methanol (1)*. An oven-dried 250-mL, 3-necked, roundbottomed flask equipped with a PTFE-coated magnetic stirring bar (3 x 1 cm) is fitted with a gas inlet adapter connected to a nitrogen line and a gas bubbler. The other two necks are capped with rubber septa; a thermocouple probe is inserted through one of the septa (Note 1). Paraformaldehyde (5.58 g, 0.186 mol, 1.07 equiv) (Notes 2 and 3) and ethanethiol (12.8 mL, 10.7 g, 0.173 mol, 1.0 equiv) (Note 4) are added to the flask. The mixture is stirred gently (avoid splashing) and cooled in an ice-water bath to 4 °C. A 25% solution of NaOMe in MeOH (0.07 mL, 0.002 equiv) is added through one of the septa via a 100 μ L syringe over 1 min. The temperature rises to 33 °C over 3 min, then cools to 13 °C over 5 min. The solids completely dissolve (Note 5). The ice-water bath is removed and the solution is stirred at 13–16 °C for 15 min. The pale yellow *(ethylthio)methanol (1)* (Note 6) is used immediately in the next step (Note 7).

(1,1-Dimethylethyl)[*(ethylthio)methoxy*]*dimethylsilane* B. (2).Dichloromethane (Note 8) (120 mL) is added to the same flask containing neat (ethylthio)methanol from Step A. The stirred solution is cooled in an ice-water bath to 3 °C, then 4-(dimethylamino)pyridine (0.90 g, 7.4 mmol, 0.04 equiv) and triethylamine (21.9 g, 0.22 mol, 1.27 equiv) are added, followed by chloro(1,1-dimethylethyl)dimethylsilane (30.0 g, 0.20 mol, 1.18 equiv), added in 3 portions over 10 min (Note 9). The ice-water bath is replaced with a water bath and the reaction is stirred for 4 h (Note 10). The mixture is transferred to a 1-L separatory funnel using dichloromethane (60 mL) to rinse the flask. The organic layer is washed with water (2 x 100 mL) and saturated aqueous ammonium chloride (100 mL). The organic phase is filtered through a bed of sodium sulfate (50 g) in a medium porosity funnel into a 1-L round-bottomed flask. sintered glass using dichloromethane (2 x 50 mL) to rinse the filter cake. The solution is concentrated by rotary evaporation (70 mmHg, bath temperature 40 °C). The residue is diluted with hexanes (150 mL), transferred to a 1-L separatory funnel, and washed with water (2 x 200 mL) and brine (75 mL). The organic layer is filtered through a bed of sodium sulfate (50 g) in a medium porosity sintered glass funnel into a 500-mL round-bottomed flask, using hexanes (2 x 50 mL) to rinse the filter cake. The solution is concentrated by rotary evaporation (70 mmHg, bath temperature 40 °C) to afford crude 2 Vacuum distillation (Note 11) provides (1,1-(38 g) as an oil. dimethylethyl)[(ethylthio)methoxy]dimethylsilane (2) as a colorless liquid (28.0–28.6 g, 78–80 % yield over Steps A and B) (Notes 12 and 13).

WARNING: Chloromethyl ethers are potent carcinogens. The preparation and handling of compound **3** should be conducted at all times in a hood or ventilated balance enclosure.

C. (Chloromethoxy)(1,1-dimethylethyl)dimethylsilane (3). An ovendried 500-mL round-bottomed flask equipped with a PTFE-coated magnetic stirring bar (3 x 1 cm) is capped with a rubber septum pierced with a nitrogen inlet needle connected to a gas bubbler. A thermocouple thermometer probe is also inserted through the septum (Note 1). (1,1-Dimethylethyl)[(ethylthio)methoxy]dimethylsilane (2) (12.1 g, 58.6 mmol, 1.00 equiv) and dichloromethane (120 mL) are added to the flask. The stirred solution is cooled to 2 °C using an ice-water bath. Sulfuryl chloride (8.14 g, 60.3 mmol, 1.03 equiv) (Note 14) is added via a 10 mL syringe over 10 min, keeping the temperature <5 °C. During the addition the reaction mixture turns yellow. After the addition, the ice-bath is removed and the solution is concentrated by rotary evaporation (70 mmHg, bath temperature 40 °C) to afford crude **3** (12.4 g). Vacuum distillation provides (chloromethoxy)(1,1-dimethylethyl)dimethylsilane (**3**) as a slightly yellow liquid (8.41–8.66 g, 80–82 % yield) (Notes 16 and 17).

D. 4-Methylbenzenesulfonothioic acid, sodium salt (4). Sodium ptoluenesulfinate monohydrate (Note 18) (25.4 g, 0.13 mol. 1.0 equiv), sulfur (4.54 g, 0.14 mol. 1.09 equiv), ethanol (100 mL) and water (100 mL) are added to a 500-mL round-bottomed flask equipped with a PTFE-coated magnetic stir bar (3 x 1 cm). The flask is lowered into a heating mantle and fitted with a Liebig condenser. The mixture is stirred and warmed to reflux for 8 h (Note 19). After the reaction mixture is cooled to room temperature, the residual sulfur is removed by filtration through a 60-mL medium porosity sintered glass funnel into a 1-L round bottom flask, using water (2 x 20 mL) to wash the reaction flask and the collected solid. The filtrate is concentrated by rotary evaporation (50 °C water bath, 70 mmHg) to wet solids (49 g). The flask is equipped with a PTFE stir bar (3 x 1 cm) and water (40 mL) is added. The slightly hazy mixture is stirred at room temperature for 3 h. The solution, which contains some suspended particles, is filtered into a 500-mL round bottomed flask through pad of pre-wetted Celite (3 g) (Note 20) in a 40-mL medium porosity sintered glass funnel, the flask and Celite pad being rinsed with water (4 x 10 mL). The clear filtrate is concentrated by rotary evaporation (50 °C water bath, 70 mmHg) to provide a wet solid (32 g) (Note 21). The flask is equipped with a PTFE stir bar (3 x 1 cm) and a Liebig condenser. Absolute ethanol (80 mL) is added and the heterogeneous mixture is stirred and warmed to reflux over a 30 min period using a heating mantle. Once the mixture reaches reflux, the heating mantle is removed and the mixture is cooled in air to room temperature over the course of 1 h, then is stirred at room temperature for 3 h. The resulting white solid is collected on a 150-mL medium porosity sintered glass funnel, portions of the filtrate being used to rinse all solids out of the flask. The 12 Org. Synth. 2013, 90, 10-24

filter cake is washed with absolute ethanol (25 mL), air-dried in the funnel by continued suction (ca 1 h) and then dried for 9 h in a vacuum oven (70 mmHg, 50 °C) to afford 4-methylbenzenesulfonothioic acid, sodium salt (22.4–23.4 g, 82–86 %) (Note 22).

4-Methylbenzenesulfonothioic acid, S-[[[(1,1-dimethylethyl)-E. dimethylsilyl]oxy]methyl] ester (5). An oven-dried 250-mL round-bottomed flask equipped with a PTFE-coated magnetic stirring bar (3 x 1 cm) is capped with a rubber septum pierced with a nitrogen inlet needle connected to a gas bubbler. A thermocouple thermometer probe is also inserted through the septum (Note 1). The septum is removed momentarily and 4methylbenzenesulfonothioic acid, sodium salt (4) (5.97 g, 28.4 mmol, 1.03 equiv) and acetonitrile (35 mL) (Note 23) are added and the suspension is stirred. (Chloromethoxy)(1,1-dimethylethyl)dimethylsilane (3) (4.96 g, 27.4 mmol, 1.00 equiv) is added via a 10-mL syringe over 1 min (Note 24). The mixture is stirred vigorously for 4 h (Note 25), then the septum is replaced with a 200-mL addition funnel and *t*-butyl methyl ether (140 mL) is added dropwise to the stirred mixture over 15 min. The mixture is filtered through a tightly packed pad of Celite (4 cm in diameter x 2.5 cm in height) (Note 26) in a 40-mL sintered glass funnel into a pre-weighed 500-mL round-bottomed flask, using MTBE (3 x 10 mL) as a rinse of the flask and filter cake. The filtrate is concentrated by rotary evaporation (40 °C bath, 70 mmHg) and dried for 3 h at ambient temperature (70 mmHg) to give 4*methylbenzenesulfonothioic* acid, *S*-*[[[(1,1-dimethyl-ethyl)dimethylsilyl]*oxy[methyl] ester (5) as a colorless, viscous oil (9.06 g, 99 %) (Notes 27, 28, and 29).

2. Notes

1. The internal temperature was monitored using a J-Kem Gemini digital thermometer with a Teflon-coated T-Type thermocouple probe (12-inch length, 1/8 inch outer diameter, temperature range -200 to +250 °C). The submitters did not monitor the internal temperature in any of the procedure's steps A-E.

2. The following reagents and solvents were obtained from Sigma-Aldrich and used as received for Step A: paraformaldehyde (powder, 95%), ethanethiol (97%), sodium methoxide (25% wt % solution in MeOH).

3. Paraformaldehyde is added in slight excess with the intention to consume all ethanethiol during the reaction to minimize odors.

4. Ethanethiol was transferred to the flask via a 10 mL graduated glass pipette (2 transfers). After transfer, the pipette was immediately rinsed with bleach.

5. If a portion of the mixture has splashed onto the walls of the flask, the material should be rinsed down by gentle swirling.

6. (Ethylthio)methanol (1) has the following physical and spectroscopic properties: FTIR (microscope) v (cm⁻¹): 3395 br, 2968, 2928, 2873, 1453 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ : 1.32 (t, J = 7.4 Hz, 3 H), 1.82 (br s, 1 H), 2.73 (q, J = 7.4 Hz, 2 H), 4.74 (s, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ : 15.2, 24.8, 65.8. Low resolution EI *m/z* calcd for C₃H₈OS 92, found 92. The submitters determined a purity of 91% by GC/MS (Agilent Technologies 7890 GC with 5975C mass spectrometer; column ZEBRON ZB-5, length 30 m, ID 0.25 mm; film thickness 0.25 µm; initial temperature 35 °C for 2 min, final temperature 290 °C for 2 min; rate of temperature 200 °C; 50:1 split injection); and 83% by NMR. The checker determined a purity of approximately 85% by ¹H NMR.

7. To minimize odors, it is recommended that the material produced in step A be used directly in Step B using the same flask.

8. The following reagents and solvents were used as received for Step B: dichloromethane (Fisher ACS certified, stabilized), chloro(1,1-dimethylethyl)dimethylsilane (Oakwood Products, Inc., West Columbia, SC), triethylamine (Sigma-Aldrich, 99.5% distilled), hexanes (Fisher, ACS reagent, >98.5%).

9. The temperature rises to 10 °C after the addition.

10. The reaction was monitored by ¹H NMR. A 0.1 mL aliquot of the reaction mixture was quenched into 1 mL CDCl₃/1 mL sat. aq. NH₄Cl. The layers were separated, then the CDCl₃ layer was concentrated to dryness. The concentrated sample was diluted with CDCl₃ for ¹H NMR analysis. Diagnostic peaks: product **2**, δ 4.82 (s, 2H, CH₂); starting material **1**, δ 4.74 (s, 2H, CH₂). Approx 1.5 % unreacted **1** remained at the 3 h sampling point.

11. The checker carried out the distillation in a 100-mL pear-shaped flask equipped with a 1-cm oval PTFE stir bar using a 3-cm Vigreaux column at a pressure of 70 mmHg. Three fractions were collected: fr 1, 80 - 120 °C (2.2 g); fr 2, 125-128 °C (28.6 g); and fr 3, 128-134 °C (3.2g). The pot residue was 1.7 g. By GC analysis (conditions in Note 12), fraction 2 was >98 % pure and fraction 3 was 85 - 90% pure. The yield was based on fraction 2. The submitters carried out the distillation at 4.8 mmHg, 58.5 – 61 °C.

12. (1, 1-Dimethylethyl)[(ethylthio)methoxy]dimethylsilane (2) has the following physical and spectroscopic properties: FTIR (microscope) v (cm⁻¹): 2957, 2930, 2897, 2858, 1472, 1463 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ : 0.13 (s, 6 H), 0.91 (s, 9 H), 1.30 (t, J = 7.4 Hz, 3 H), 2.68 (q, J = 7.4 Hz, 2 H), 4.82 (s, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ : -4.8, 15.1, 18.4, 24.8, 26.0, 66.2. GC-MS *m/z* (relative intensity), 149 (92%, M⁺ - *t*-Bu), 119 (100%, M⁺ - *t*-BuMe₂), 91(40%), 89 (61%), 75 (43%), 73 (63%). Purity = 98 % by GC (t_R = 7.5 min; conditions: Agilent DB35MS column; 30 m x 0.25 mm; initial temp 60 °C, ramp at 20 °C/min to 280 °C, hold 15 min).

13. The submitters report the compound is stable at room temperature for at least 1 month when kept in a stoppered flask.

14. The following reagents and solvents were used as received for Step C: dichloromethane (Fisher ACS certified, stabilized,), sulfuryl chloride (Acros, 97%).

15. The temperature rose to 12 °C.

16. The distillation was carried out in a 50-mL pear-shaped flask containing a PTFE-coated oval magnetic stir bar (1 cm) using a 3-cm Vigreaux column at a pressure of 70 mmHg. Three fractions were collected: fr 1, 30–83 °C (1.18 g); fr 2, 83–87 °C (6.89 g); fr 3, 87–88 °C (1.52 g). GC purity (Note 12) was 96.5% for fraction 2 and 94.5% for fraction 3. Fractions 2 and 3 were combined. The submitters reported distillation at 70.0–72.5 °C (26 mmHg).

17. (Chloromethoxy)(1,1-dimethylethyl)dimethylsilane (3) has the following physical and spectroscopic properties: FTIR (neat film, microscope) υ (cm⁻¹): 2958, 2932, 2901, 2860, 1473, 1464 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ : 0.21 (s, 6 H), 0.92 (s, 9 H), 5.61 (s, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ : -5.0, 18.0, 25.7, 76.6. GC-MS *m/z* (relative intensity), 125 (9 %, M⁺ - *t*-Bu) 123 (24%, M⁺ - *t*-Bu), 95 (35 %, M⁺ - *t*-BuMe₂), 93 (100 %, M⁺ - *t*-BuMe₂), 73 (25%), 57 (45%). Purity = 96 % by GC (t_R = 5.5 min, conditions in Note 12). The checkers noted the compound decomposes at a rate of 15% per week at room temperature when stored in a glass flask with a glass stopper based on ¹H NMR analysis. In the refrigerator, a small amount of decomposition (2-3%) occurred over a two-week period.

18. The following reagents and solvents were used as received for Step D: *p*-toluenesulfinate hydrate (Acros, 98%), sulfur (Fisher, sublimed powder, ethanol (Sigma-Aldrich, 99.5%), Celite (Sigma-Aldrich, acid-washed).

19. Reaction progress was monitored by ¹H NMR as follows. A 0.1 mL reaction aliquot was evaporated to dryness then dissolved in DMSO-d₆. Diagnostic resonances were δ 7.14–7.15 (m, 2 H), 7.61–7.63 (m, 2 H) for product **4** and 7.35–7.37 (m, 2H) for *p*-TsSO₂Na. Approximately 1% *p*-TsSO₂Na remained at the 7 h timepoint.

20. The Celite was pre-wetted by filtering 20-mL water through the Celite cake. The hazy filtrate was discarded and the receiving flask rinsed with water prior to filtering the reaction mixture.

21. The crude material contains 3% sodium *p*-toluenesulfinate based on 1 H NMR analysis.

22. 4-Methylbenzenesulfonothioic acid, sodium salt (4) has the following physical and spectroscopic properties: IR (KBr) v (cm⁻¹): 3039, 3023, 2981, 2920, 2861, 1934, 1664, 1596, 1494, 1398 cm⁻¹; ¹H NMR (500 MHz, DMSO-d₆) δ: 2.30 (s, 3 H), 7.14–7.15 (m, 2 H), 7.61–7.63 (m, 2 H); ¹³C NMR (125 MHz, DMSO-d₆) δ : 20.7, 124.0, 128.0, 138.2, 152.6; exact mass (electrospray) m/z calcd for C₇H₇O₂S₂ (M-Na) 186.9893, found 186.9895. The material contained 0.2 wt% water based on Karl Fischer titration. Weight percent purities of 94% and 97% (2 runs) were determined based on quantitative ¹H NMR analysis (DMSO-d₆) using dichloroethane as internal standard, based on 2 weighings (samples 30-60 mg each), 4 acquisitions using a pulse delay of 10 seconds, and 8 independent peak integrations. The material with 94 wt% purity was purified by slurrying as follows: Compound 4 (22.6 g) and 95% ethanol (80 mL) were added to a 500-mL round bottomed flask equipped with a PTFE oval-stir bar (3 x 1 cm). The stirred mixture was heated to reflux (remains a slurry) with a heating mantle, then cooled in air with stirring to ambient temperature over 1 h and stirred for an additional 3 h. The material was filtered into a 60-mL sintered glass funnel, washed with absolute ethanol (25 mL), and dried under vacuum (70 mmHg, 50 °C) to afford product (17.9 g, 79% recovery). NMR quantitative assay indicated 98 wt% purity.

23. The following reagents and solvents were used as received for Step E: acetonitrile (Fisher Optima, water content 0.001%), *t*-butyl methyl ether (>98.5%, Sigma-Aldrich), Celite (Sigma-Aldrich, acid-washed).

24. The reaction warms to 27 °C over 10 min, then cools slowly to room temperature over 30 min.

25. The reaction remains heterogeneous throughout. The reaction was monitored by ¹H NMR as follows. A 0.1 mL reaction aliquot was added to 1 mL MTBE, filtered, and concentrated to dryness. The sample was dissolved in CDCl₃ for analysis. Diagnostic peaks were δ 5.61 (s, 2H) for

unreacted **3** and 5.41 (s, 2H) for product **5**. Less than 1% starting material remained at the 3 h timepoint.

26. The Celite was pre-wetted by filtering 20-mL MTBE through the Celite cake. The filtrate was discarded and the receiving flask rinsed with MTBE prior to filtering the reaction mixture. The submitters used diethyl ether in this experiment instead of MTBE.

4-Methylbenzenesulfonothioic *S*-*[[(1,1-dimethylethyl)*-27. acid. dimethylsilyl]oxy]methyl] ester (5) has the following physical and mp 33–34 °C (MTBE/hexanes); FTIR spectroscopic properties: (dichloromethane cast film) v (cm⁻¹): 2955, 2930, 2886, 2858, 1595, 1493, 1472, 1464, 1444 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ: -0.03 (s, 6 H); 0.76 (s, 9 H), 2.42 (s, 3 H), 5.41 (s, 2 H), 7.27–7.32 (m, 2 H), 7.84–7.86 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ: -5.3, 18.1, 21.8, 25.6, 71.5, 127.3, 129.8, 144.0, 144.6; exact mass (electrospray) m/z calcd for C₁₄H₂₄NaO₃S₂Si 355.0828, found 355.0824; GC-MS *m/z* (relative intensity), 275 (6%, M⁺ - *t*-Bu), 245 (59%, $M^+ - t$ -BuMe₂), 91 (39%), 75 (100%), 73 (30%). Anal. calcd. for C₁₄H₂₄O₃S₂Si: C, 50.56; H, 7.27; S, 19.28; found C, 50.44; H, 6.83; S, 19.61. Weight percent purities of 87% and 90% (2 runs) were determined based on quantitative ¹H NMR analysis (CDCl₃) using dichloroethane as internal standard, as outlined in note 22.

28. A purified sample of **5** was obtained by crystallization as follows: Compound **5** (7.1 g) was dissolved in MTBE (10 mL). Residual solids were removed by filtration through a 0.45 μ m PTFE syringe filter (25 mm, Millipore catalog # SLCR025NS) into a 100-mL round-bottomed flask. Hexanes (20 mL) were added and the solution was held in a -20 °C freezer for 20 h. (Obtaining crystals for the first time at small scale required 6 days in the freezer; thereafter, crystallization typically initiated within a few hours). The product was isolated by filtration on a 40-mL sintered glass funnel, using MTBE/hexanes (1:1) (5 mL, -20 °C) as a wash, to provide colorless cubic crystals (4.1 g 59% recovery). Weight percent purities of 97% and 98 % (2 runs) were determined based on quantitative ¹H NMR analysis (CDCl₃) using dichloroethane as internal standard, as outlined in note 22.

29. The submitters report the compound decomposes on silica gel and on neutral Grade III alumina. The compound has been kept without change (¹H NMR) at room temperature for 1 week and is stable in the freezer for at least 2 months.

Handling and Disposal of Hazardous Chemicals

The procedures in this article are intended for use only by persons with prior training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011 www.nap.edu). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In the development and checking of these procedures, every effort has been made to identify and minimize potentially hazardous steps. The Editors believe that the procedures described in this article can be carried out with minimal risk if performed with the materials and equipment specified, and in careful accordance with the instructions provided. However, these procedures must be conducted at one's own risk. *Organic Syntheses, Inc.*, its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

3. Discussion

During the course of synthetic studies directed towards the antitumor agent MPC1001,² a need arose for a protected bivalent sulfur unit so constituted that it could be introduced by reaction with a carbanion and later dismantled to release a sulfhydryl group under mild conditions. Although numerous sulfur protecting groups are known,³ our precise requirements prompted us to investigate the CH₂OSiMe₂Bu-*t* group for sulfur protection and the reagent 4-MeC₆H₄SO₂-SCH₂OSiMe₂Bu-*t* (**5**) for introducing sulfur protected in this manner.⁴ Other sulfonothioic acid esters such as PhSO₂-SPh have been used for sulfenylation of carbanions,⁵ and the use of a silyl group offered the possibility of controlling the deprotection conditions by changing the substituents on silicon.⁶ Although chloromethoxysilanes have been used for protection of alcohols,⁷ they do not appear to have been used for sulfur protection.

A direct method for preparing reagent (5) appeared to be by way of reaction E above, and so we prepared the two components, salt (4) and the chloromethoxysilane (3). Both were made by the literature methods^{8,9} which 18 *Org. Synth.* 2013, *90*, 10-24

are described in detail here. Reaction of the salt with silane (3) afforded the desired sulfenylating agent (5).

In order to test if the CH_2OSiMe_2Bu -*t* group could indeed serve as an effective form of protection for bivalent sulfur, we treated a number of simple thiols with reagent (3) so as to generate the sulfides shown in Table 1.⁴ DMF is a satisfactory solvent and proton sponge or 2,6-lutidine gave the best results, depending on the particular case.

Several methods for deprotection of the sulfides were examined (Table 2).⁴ Treatment with Bu_4NF in THF; Bu_4NF and AcOH in THF, or HF.pyridine in THF were all suitable, and it was usually convenient to oxidize the thiols in situ by addition of iodine. In a few cases the protecting group was removed by reaction with a sulfenyl halide (2-nitro-

benzenesulfenyl chloride, α, α -diphenylbenzenemethanesulfenyl chloride, benzenemethanesulfenyl chloride).

1	Ph ₃ CSPg ^a	Bu₄NF, THF, -78 °C, 15 min; to -10 °C (ca. 3 min), 68%	Ph ₃ CSH
2	SPg	Bu₄NF, THF, rt, 20 min; I₂, CDCI₃, rt, 30 min, 89%	S-)2
3	Ph ₃ CS(CH ₂) ₃ SPg	Bu₄NF, AcOH, THF, rt, 40 min; Et ₃ N, I₂, rt, 3 min, 53%	$Ph_3CS(CH_2)_3S -)_2$
4	MeO₂C ≝ NHCbz	HF-pyr, THF, rt, 60 min; I ₂ , rt, 60, 87%	MeO ₂ C I NHCbz
5	Me(CH ₂) ₁₁ SPg	HF-pyr, THF, rt, 50 min; I ₂ , rt, 12 h, 89% ►	Me(CH ₂) ₁₁ S) ₂
6	ArCO ₂ CH ₂ CH ₂ SPg Ar = 3,5-(MeO) ₂ C ₆ H ₄	HF-pyr, THF, rt, 6 h; I ₂ , rt, 1 min, 91% ►	$ArCO_2CH_2CH_2S \rightarrow 2$
7	Me(CH ₂) ₁₁ SPg	2-(O ₂ N)C ₆ H₄SCI, CH ₂ CI ₂ 2,6-lutidine, rt, 20 min, 96%	Me(CH ₂) ₁₁ SSAr' Ar' = 2-(O ₂ N)C ₆ H ₄
8	Me(CH ₂) ₁₁ SPg	Ph ₃ CSSCI, CH ₂ CI ₂ 2,6-lutidine, rt, 1 h, 93%	Me(CH ₂) ₁₁ SSSCPh ₃
9	Me(CH ₂) ₁₁ SPg ^a Pg = CH ₂ OSiMe ₂ Bu- <i>t</i>	BnSCl, CH₂Cl₂ 2,6-lutidine, rt, 10 min, 66% ➤	Me(CH ₂) ₁₁ SSBn

Table 2. Deprotection

The stability of the protecting group was evaluated⁴ by exposing *n*- $C_{12}H_{25}SCH_2OSiMe_2Bu$ -*t* (6) to a variety of conditions. The compound is stable to $H_2/Pd/C$ in methanol-dichloromethane and to $H_2/Rh/Al_2O_3/ethyl$ acetate. An *O*-triethylsilyl ether can be selectively deprotected in the presence of (6), using $H_2/Pd/C$ in methanol-dichloromethane. The protecting group appears to survive typical conditions for removal of a Troc group (zinc dust in acetic acid-diethyl ether) and an Fmoc group can be Org. Synth. 2013, 90, 10-24

removed in its presence by using piperidine. Hydride reducing agents either have no effect (sodium borohydride) or little effect (lithium aluminum hydride, diisobutylaluminum hydride). (PhS)₂CH₂ can be deprotonated with butyllithium with very little decomposition (4%) of the test substrate. Acidic reagents (trifluoroacetic acid, *p*-toluenesulfonic acid hydrate, pyridinium *p*-toluenesulfonate-MeOH, boron trifluoride etherate) are not compatible with the protecting group, except for pyridinium *p*toluenesulfonate in dichloromethane and exposure to silica gel during chromatography. A primary alcohol can be converted into the corresponding bromide (tetrabromomethane, triphenylphosphine) without affecting the protecting group, but oxidizing agents (pyridinium chlorochromate, Dess-Martin periodinane, 2-iodoxybenzoic acid (IBX), Swern conditions) are not compatible with the protecting group. A primary alcohol can be silylated with triethylsilyl triflate in the presence of (**6**).

The sulfenylating agent (5) has been used to introduce the protected sulfur, as shown in eq 1.⁴ Sulfur deprotection is illustrated in eq 2,¹⁰ which represents the result of a single experiment. A more sophisticated use of the sulfenylating agent (5) as well as subsequent deprotection in a synthetically complex setting is summarized in Scheme 1.¹⁰

Scheme 1. Sulfenylation with reagent 5 and deprotection

- 1. Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; e-mail: derrick.clive@ualberta.ca. We thank the Natural Sciences and Engineering Research Council of Canada for financial support. L.W. held a Marie Arnold Cancer Research Graduate Scholarship and an Alberta Heritage Foundation for Medical Research Graduate Studentship.
- 2. Peng, J.; Clive, D. L. J. J. Org. Chem. 2009, 74, 513-519.
- (a) Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis, 4th ed.; Wiley-Interscience: NJ, 2007, p 687. (b) Kocieński, P. J. Protecting Groups, 3rd ed.; Thieme: Stuttgart, 2004, p 380.
- 4. Wang, L.; Clive, D. L. J. Org. Lett. 2011, 13, 1734–1737.
- (a) Scholz, D. *Liebigs Ann. Chem.* 1984, 259–263. Representative recent examples: (b) Trost, B. M.; Salzman, T. N.; Hiroi, K. *J. Am. Chem. Soc.* 1976, *98*, 4887–4902. (c) Goodridge, R. J.; Hambley, T. W.; Haynes, R. K.; Ridley, D. D. *J. Org. Chem.* 1988, *53*, 2881–2889. (d) Deng, K.; Chalker, J.; Yang, A.; Cohen, T. *Org. Lett.* 2005, *7*, 3637–3640. (e) Chen, W.; Pinto, B. M. *Carbohydrate Res.* 2007, *342*, 2163–2172. (f) Brennan, C.; Pattenden, G.; Rescourio, G. *Tetrahedron Lett.* 2003, *44*, 8757–8760.
- 6. *i*-Pr₃SiOCH₂Cl is commercially available.

- (a) Gundersen, L.-L.; Benneche, T.; Undheim, K. Acta. Chem. Scand.
 1989, 43, 706–709. (b) EP 1565479B1 (2006). (c) Pitsch, S.; Weiss, P. A.; Jenny, L.; Stutz, A.; Wu, X. Helv. Chim. Acta 2001, 84, 3773–3795.
- 8. Harmon, J. P.; Field, L. J. Org. Chem. 1986, 51, 5235–5240.
- Benneche, T.; Gundersen, L.-L.; Undheim, K. Acta. Chem. Scand. 1988, 42B, 384–389.
- 10. Wang, L.; Clive, D. L. J. Tetrahedron Lett. 2012, 53, 1504–1506.

Appendix Chemical Abstracts Nomenclature (Registry Number)

(Chloromethoxy)(1,1-dimethylethyl)dimethylsilane; (119451-80-8)
Chloro(1,1-dimethylethyl)dimethylsilane; (18162-48-6)
4-(Dimethylamino)pyridine; (1122-58-3)
(1,1-Dimethylethyl)[(ethylthio)methoxy]dimethylsilane; (119451-79-5)
Ethanethiol; (75-08-1)
(Ethylthio)methanol; (15909-30-5)
4-Methylbenzenesulfonothioic acid, *S*-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl] ester; (1277170-42-9)
4-Methylbenzenesulfonothioic acid, sodium salt (1:1); (3753-27-3)
Paraformaldehyde; (30525-89-4)
Sodium methoxide; (124-41-4)
Sodium *p*-toluenesulfinate hydrate (TolSO₂Na·H₂O); (207801-20-5)
Sulfur; (7704-34-9)
Sulfuryl chloride; (7791-21-5)
Triethylamine; (121-44-8)

Derrick Clive was born in London and was educated at Imperial College where he obtained a B.Sc. (Special) in Chemistry, and then a Ph.D. in Professor Barton's group. Dr. Jack E. Baldwin (now Sir Jack) assisted in the supervision of these postgraduate studies. Derrick then held a postdoctoral position at Harvard in R. B. Woodward's group. In 1975 he joined the Chemistry Department of the University of Alberta, where he is now Professor of Chemistry. He has published over 200 papers on the development of general synthetic methods — involving mainly selenium chemistry and radical cyclization — and on the total synthesis of complex natural products with significant biological properties.

Lihong Wang was born in Zhoushan, Zhejiang Province, and obtained his B.Sc. at Fudan University. He stayed at Fudan University to begin his graduate studies, but moved to the University of Alberta in 2006 for his Ph.D. under the supervision of Professor Clive. Lihong's research has been supported by a number of Scholarships and is in the area of synthetic methodology and natural product synthesis. After obtaining his Ph.D. in 2011 he joined Professor Nicolaou's group at the Scripps Institute as a postdoctoral fellow.


```
32077-192
```

195 190 185 180 175 170 165 160	0 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80	75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 ppm

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	1.2452340 8192 19.000 6.50	Hz sec usec K
======= NUC1 P1 PL1 SFO1	CHANNEL f1 ==== 13C 8.00 4.50 100.6238364	usec dB
CPDPRG2 NUC2 PCPD2 PL2 PL12 SF02 SI SF WDW SSB LB GB PC	waltz16 1H 80.00 120.00 18.34 400.1320007 32768 100.6127496 EM 0	usec dB dB MHz

whereas we have bether being and a start whereas a start where the best of the product of the original start we want to be start of the original start of the sta

	 S.	∕ОН
--	------------	-----

77.54 77.22 76.90

- 65.83

I water a state with the state of the state

البابين إليار ولأس التداد

32077–192 crude (ethylthio)methanol nmr400c c-13 hughesda

والاستراسي والمناجر والمراجع والمراجع والمراجع والمراجع والمراجع والمحافظ والمح

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0	32077-192 10 1 20120522 8.11 spect 5 mm QNP 1H/13 2g30 65536 CDC13 32 4 13020.833 Hz 0.198682 Hz 2.5166707 sec 90.5 38.400 usec 6.50 usec 300.0 K 0.10000000 sec
NUC1 P1 SF01 SI SF WDW SSB LB GB PC	CHANNEL f1 ===== 1H 12.00 usec -4.00 dB 500.1330885 MHz 32768 500.1300082 MHz EM 0 0.30 Hz 0 1.40

9.5

Peak	?(F1)	[ppm] ?(F1)	[Hz]
1	7.2701	3635.9952	
2	4.8167	2408.9762	
3	2.7006	1350.6511	
4	2.6857	1343.1992	
5	2.6707	1335.6972	
6	2.6560	1328.3453	
7	1.3175	658.9213	
8	1.3025	651.4193	
9	1.2878	644.0674	
10	0.9539	477.0740	
11	0.9221	461.1699	
12	0.9195	459.8695	
13	0.9139	457.0688	
14	0.9078	454.0180	
15	0.1347	67.3675	
16	0.1288	64.4167	
17	0.1224	61.2159	
17	0.1224	61.2159	
18	0.1052	52.6137	

∽s_o_si

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG	32077-192 11 20120522 8.18 spect 5 mm QNP 1H/13 zgdc 131072 CDC13 257 4 40322.582 0.307637 1.6253552 8192	Hz Hz sec
DW DE TE D1 D11 TD0	12.400 6.50 300.0 0.1000000 0.0300000 40	usec usec K sec sec
======= NUC1 P1 PL1 SF01	CHANNEL f1 ==== 13C 2.50 0.00 125.7703648	usec
CPDPRG2 NUC2 PCPD2 PL2 PL12 SFO2 SI SF WDW SSB LB GB PC	CHANNEL f2 ==== waltz16 1H 80.00 120.00 11.50 500.1325007 65536 125.7577617 EM 0 1.00 0 1.40	usec dB dB MHz

ngungan kanalan	endersprechtendigen kannen stellen Biller	witeren auf weiserigt in the second	and the second	n an		nangitenting gestaatile gebete	tinder: the second second second	fransispurt in stick of the stand by	Natilet gladigt and finglaged	antest tipper waard at som		kentisten egyten kannake kindered høre	and an age of the state of the state of the	inerteristik (strenderigssyludji	un martin da fan de
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40

32077-192 EtSCH2OTBS Distilled Fr 2 nmr500c c-13 hughesda

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0	32077-194 1 20120526 14.44 spect 5 mm QNP 1H/13 zg30 65536 CDC13 32 4 13020.833 Hz 0.198682 Hz 2.5166707 sec 181 38.400 usec 6.50 usec 300.0 K 0.10000000 sec 1
NUC1 P1 SF01 SI SF WDW SSB LB GB PC	CHANNEL f1 ======= 1H 12.00 usec -4.00 dB 500.1330885 MHz 32768 500.1300083 MHz EM 0 0.30 Hz 0 1.00

9.5

8.5

8.0

7.5

7.0

6.5

9.0

Peak 1 2 3 4 5 6	?(F1) 7.2701 5.6111 0.9887 0.9296 0.9237 0.9178	3635.9952 2806.2795 494.4785 464.9209 461.9701 459.0193	[Hz]
6			
./	0.2148	107.4279	
8 9	0.2086 0.2022	104.3271 101.1263	

2.000

5.5

6.0

5.0

4.5

3.5	3.0	2.5	2.0

4.0

NAME	32077-194
EXPNO	2
PROCNO	1
Date_	20120526
Time	14.51
INSTRUM	spect
PROBHD	5 mm QNP 1H/13
PULPROG	zgdc
TD	131072
SOLVENT	CDC13
NS	1014
DS	4
SWH	40322.582 Hz
FIDRES	0.307637 Hz
AQ	1.6253552 sec
RG	8192
DW	12.400 usec
DE	6.50 usec
TE	300.0 K
D1	0.10000000 sec
D11	0.03000000 sec
TD0	40
NUC1	CHANNEL f1 ===================================
P1	2.50 usec
PL1	0.00 dB
SFO1	125.7703648 MHz
5101	123.//03040 MHZ
======	CHANNEL f2 ======
CPDPRG2	waltz16
NUC2	1H
PCPD2	80.00 usec
PL2	120.00 dB
PL12	11.50 dB
SFO2	500.1325007 MHz
SI	65536
SI SF WDW SSB	125.7577618 MHz EM 0
LB	1.00 Hz
GB	0
PC	1.40

aren angerijken al met men der der der		مرينيا و معيار اين بي الإيريني و الايريني و الايريني و الايريني و الايريني و الايريني و الايريني و ال	وتعاقره والمتلوب والمراجع والمراجع	an a	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	۷۹، و دون و معالی اور با رو با				e fogel at an gener af fange ok	Non state of the second st	, , , , , , , , , , , , , , , , , , , 	ويعلين سوطين ويتعان ترطلسسي شلومه		ىرىنىيەتىرىكەر ئەرىلىرىنىيە بەرلىرىيەر يەرلىرىيەر بەر
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40

32077-194 distilled fr 2 ClCH2OTBS nmr500c c-13 hughesda

0

--5.00

32077-193 recrystallized nmr500c h-1 hughesda

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 H_{3}	740.01

32077-193 recrystallized nmr500c c-13 hughesda

40	35	30	25	20	15	10	5	ppm

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD 5 PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0	32077-197 2 1 20120617 14.59 spect mm PABBO BB- zg30 32768 CDC13 32 6410.256 0.195625 2.5559540 114 78.000 6.50 300.0 0.10000000	usec K	Peak 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	?(F1) 7.8612 7.8402 7.3157 7.2957 7.2944 7.2701 5.4138 2.4342 0.9177 0.8981 0.7698 0.7623 0.7548 0.1588 0.1346 -0.0226 -0.0303 -0.0382	-12	0993 2311 2285 7083 9852 2238 965 993 3568 0201 0191 0181 406	[Hz] 0.80 0.68 0.62 0.55 0.61 3.55 2.74 0.57 0.49 0.73 15.00 0.69 0.36 0.35 0.42 10.93 0.36
---	--	-----------	---	--	-----	---	--

NUC1 P1 PL1 SF01 SI SF WDW SSB LB GB PC	CHANNEL f1 ==== 1H 10.40 0.00 400.1324710 32768 400.1300054 EM 0 0.30 0.30 0 1.00	usec dB MHz MHz
PC	1.00	

Intensity [rel] Annotation

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0 ====== NUC1 P1 PL1 SF01 SI SF WDW SSB LB GB PC	2012070 8.0 5 mm QNP 1H/1 5 mm QNP 1H/1 3 13020.83 0.19868 2.516670 90. 38.40 6.5 300. 0.1000000 = CHANNEL f1 == 1 12.0 -4.0 500.133088 3276 500.130008	0 1 7 5 5 5 6 3 3 6 6 3 3 2 4 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 5 5 5 10 10 5 5 10 10 5 5 10 10 5 10 10 10 10 10 10 10 10 10 10			H₃C			O S N O CRYS	S falli	ZED	Si	
Peak 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	?(F1) [pp 7.8535 7.8501 7.8403 7.8367 7.8328 7.3099 7.2938 7.2701 5.4093 2.4295 0.7985 0.7643 0.7587 0.7527 -0.0276 -0.0337 -0.0400	m] ?(F1) 3927.7710 3926.0706 3921.1693 3919.3688 3917.4183 3655.9003 3647.8483 3635.9952 2705.3533 1215.0659 399.3538 382.2494 379.4486 376.4479 -13.8036 -16.8544 -20.0052	[Hz] Intensi 31160953.00 10519502.00 11895955.00 31209633.00 5068397.00 24609565.00 25872015.00 3944909.00 136863886.00 105994808.00 4472616.00 33620975.00 480559328.00 25913614.00 18696702.00 232446207.00 13034602.00	ty [abs]								
						,						
		1.835	1.893					· · · · · ·				3.041
9.5	9.0 8	.5 8.0	7.5 7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5

32077-200 recryst from MTBE nmr500c h-1 hughesda

