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Preparation of (E)-N,N-Diethyl-2-styrylbenzamide by  

Rh-Catalyzed C-H Activation 
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1. Procedure 

 

(E)-N,N-Diethyl-2-styrylbenzamide: A flame-dried, 200-mL, three-
necked round-bottomed flask is equipped with 2.5 cm rod-shaped, Teflon-
coated, magnetic stirbar, glass stopper, rubber septum and reflux condenser 
fitted with argon inlet (Note 1). The flask is flushed with argon and charged 
with [Cp*RhCl2]2 (45.8 mg, 0.074 mmol, 0.25 mol%) (Note 2), AgSbF6 
(102 mg, 0.30 mmol, 1.00 mol%) (Note 3), Cu(OAc)2 (11.3 g, 62.2 mmol, 
2.10 equiv) (Note 4) and 1,4-dioxane (30 mL) (Note 5). N,N-
Diethylbenzamide (5.25 g, 29.6 mmol, 1 equiv) (Note 6) in 1,4-dioxane 
(10 mL) is added via cannula and styrene (5.11 mL, 44.4 mmol, 1.50 equiv) 
(Note 7) is added via syringe into the resulting blue-green suspension. The 
rubber septum is changed to a glass stopper and the stirred suspension is 
heated in an oil bath (125 °C) for 23 h (Note 8). The reaction mixture is 
allowed to cool to room temperature, gravity filtered through a cotton plug 
into a 500-mL round bottomed flask and rinsed with toluene (150 mL) (Note 
9). The resulting green solution is concentrated by rotary evaporation (40 °C 
water bath, 40 mmHg,). Toluene (2 x 200 mL) is added and then evaporated 
twice (Note 10) (40 °C water bath, 40 mmHg). The crude is filtered through 
a short plug of silica gel (Notes 11 and 12), washed with EtOAc (500 mL), 
and concentrated by rotary evaporation (40 °C water bath, 70 mmHg) to 
provide a yellow viscous oil (Note 13). This material is purified by silica gel 
column chromatography (Notes 14 and 15). The combined eluent is 
concentrated by rotary evaporation (40 °C water bath, 70 mmHg) and then 
submitted to high vacuum (0.3 mmHg) at 80 °C for 24 h (Note 16) to furnish 
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7.62 g (27.3 mmol, 92%) of (E)-N,N-diethyl-2-styrylbenzamide as a light 
yellow viscous oil (Note 17). 
 

2. Notes 

 

1. The submitters used a dry Schlenk-tube (capacity: 166 mL, 
diameter: 45 mm) with a screw cap equipped with a 2.5 cm magnetic stir bar 
under an argon atmosphere. The submitters have shown that air could serve 
as terminal oxidant; nevertheless, the reaction is less effective in moist 
conditions, presumably due to the competitive binding of water to the active 
metal coordination sites. Therefore, use of an argon atmosphere is 
recommended. 

2. The submitters purchased [Cp*RhCl2]2 from Heraeus and stored 
the catalyst in a glovebox under argon. The checkers purchased [Cp*RhCl2]2 
from Aldrich and used the material as received. 

3. The submitters purchased AgSbF6 from ABCR and stored the 
material in a glovebox under argon. The checkers purchased AgSbF6 from 
Aldrich and used the material as received. 

4. The submitters prepared Cu(OAc)2 from Cu(OAc)2(H2O), which 
was purchased from Aldrich, by heating at 100 °C under high vacuum 
(approx. 0.1 mmHg) for 48 h. The checkers prepared Cu(OAc)2 from 
Cu(OAc)2(H2O), which was purchased from Aldrich, by heating at 100 °C 
under vacuum (2 mmHg) for 72 h. 

5. The checkers purchased 1,4-dioxane from Aldrich and the solvent 
was stored over activated 4Å molecular sieves. 

6. The submitters prepared N,N-diethylbenzamide, Rf = 0.3 
(pentane/ethyl acetate 8:2), a light yellow liquid, from a simple condensation 
of Et2NH with benzoyl chloride. The checkers purchased N,N-
diethylbenzamide (98.0+%) from Wako and used the material as received. 

7. The submitters purchased styrene from Acros and used as received. 
The checkers purchased styrene (>99.0%) from Tokyo Chemical Industry 
Co., Ltd. and used it as received. 

8. The consumption of the starting material was monitored by TLC 
analysis on Merck silica gel 60 F254 plates (0.25 mm, glass-backed, 
visualized with 254 nm UV lamp) using 20% acetone in toluene as an 
eluant. N,N-Diethylbenzamide (starting material) had Rf = 0.49 (UV active) 
and (E)-N,N-Diethyl-2-styrylbenzamide had Rf = 0.58 (UV active) 
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9.  Large brown-red precipitate that is typical for CuI/Cu0 species is 
removed. 

10.  Azeotropic removal of styrene and 1,4-dioxane was performed in 
order to simplify the purification process.  

11. The crude material is dissolved in EtOAc (20 mL) and then 
charged onto a silica gel column (diameter = 3 cm, height = 10 cm) of 35 g 
(80 mL) of silica gel. 

12. The checkers purchased silica gel (acidic) from Kanto Chemical 
Co., Inc. (40–100 μm). The submitters purchased silica gel (0.040–

0.063 mm) from Merck. 
13. The submitters performed GC-MS analysis of the crude material 

and detected only the peak corresponding to the product, corresponding to 
the only major spot (Rf = 0.4) on the TLC plate (pentane/ethyl acetate = 8:2, 
UV detection) 

14. The crude material was dissolved in toluene (10 mL) and then 
charged onto a column (diameter = 10 cm, height = 11 cm) of 425 g 
(1000 mL) of silica gel. The column was eluted with n-hexane/EtOAc = 8:1 
(7.0 L) to 2:1 (3.6 L) and 100-mL fractions were collected. Fractions 73-108 
were combined. 

15. The major by-product was a dimer of N,N-diethylbenzamide (Rf = 
0.62 (hexane/ethyl acetate = 8:2, UV detection with 254 nm UV lamp), 
Merck silica gel 60 F254 plates (0.25 mm, glass-backed) were used for TLC 
analysis). Fractions 46-70 were combined to obtain 216 mg of such 
compound. 

O

O N

N

 
 

16. A very minor condensation may appear eventually in the vacuum 
line system (< 10 mg). NMR shows it to be exclusively the starting material 
N,N-diethylbenzamide. This represents a convenient way to remove trace 
impurities that may still be present in spite of the silica gel purification. 

17. (E)-N,N-Diethyl-2-styrylbenzamide has the following 
physicochemical and spectroscopic properties: Rf = 0.4 (pentane/ethyl 
acetate = 8:2), Rf = 0.34 (hexane/ethyl acetate = 8:2); 1H NMR (400 MHz, 
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CDCl3) : 1.00 (t, 3
J = 7.1 Hz, 3 H), 1.31 (t, 3

J = 7.1 Hz, 3 H), 3.11 (q, 3
J = 

7.1 Hz, 2 H), 3.39 (broad s, 1 H), 3.85 (broad s, 1 H), 7.09 (d, 3
J = 16.5 Hz, 

1 H), 7.13 (d, 3
J = 16.5 Hz, 1 H), 7.23–7.47 (m, 8 H), 7.70 (d, 3J = 7.8 Hz, 1 

H); 13C NMR (100 MHz, CDCl3) : 12.9 (s, CH3), 13.8 (s, CH3), 38.8 (s, 

CH2), 42.8 (s, CH2), 124.9 (s, CH), 125.2 (s, CH), 126.1 (s, CH), 126.5 (s, 
CH), 127.5 (s, CH), 127.8 (s, CH), 128.6 (s, CH), 128.7 (s, CH), 130.8 (s, 
CH), 133.6 (s, Cquat), 136.3 (s, Cquat), 137.0 (s, Cquat), 170.3 (s, Cquat); HRMS 
(ESI): m/z calc. for [(C19H21NO)Na]+ 302.15208, found 302.15169; IR cm-1: 
2974, 2933, 1626, 1428, 1380, 1363, 1314, 1285, 1220, 1113, 1075, 963, 
762, 692, 627, 547, 528; Anal. Calc. for C19H21NO: C, 81.68; H, 7.58; N, 
5.01. Found: C, 81.29; H, 7.49; N, 4.94. 
 

Handling and Disposal of Hazardous Chemicals 

 

The procedures in this article are intended for use only by persons 
with prior training in experimental organic chemistry.  All hazardous 
materials should be handled using the standard procedures for work with 
chemicals described in references such as "Prudent Practices in the 
Laboratory" (The National Academies Press, Washington, D.C., 2011 
www.nap.edu).  All chemical waste should be disposed of in accordance 
with local regulations.  For general guidelines for the management of 
chemical waste, see Chapter 8 of Prudent Practices. 

 In the development and checking of these procedures, every 
effort has been made to identify and minimize potentially hazardous steps. 
The Editors believe that the procedures described in this article can be 
carried out with minimal risk if performed with the materials and equipment 
specified, and in careful accordance with the instructions 
provided.  However, these procedures must be conducted at one's own 
risk.  Organic Syntheses, Inc., its Editors, and its Board of Directors do not 
warrant or guarantee the safety of individuals using these procedures and 
hereby disclaim any liability for any injuries or damages claimed to have 
resulted from or related in any way to the procedures herein. 
 

3. Discussion 

 

The oxidative Heck-type reaction, as pioneered by Fujiwara and 
Moritani,2 has emerged as an attractive method for the coupling of arenes 
and olefins, because in contrast to the traditional Heck reaction,3 it obviates 



Org. Synth. 2013, 90, 41-51  45 

prior activation of either reaction partner. For this cross-coupling reaction, 
palladium-based complexes are traditionally privileged catalysts,4–6 for 
example in the C-H oxidative olefination of acetanilides with acrylate 
derivatives reported by de Vries, van Leeuwen et al.,5 and in the use of 
remote carboxylic acids as efficient directing groups described by Yu et al.6 
Miura and Satoh et al.,7 we,8 and others have looked at other transition 
metals for these C-H activation processes, specifically rhodium, which often 
allows lower catalytic loadings, higher selectivities, and broader olefin 
scope. Whereas acrylates were previously used as the preferred reaction 
partner, recently we have had some success with the rhodium-catalyzed 
coupling of unactivated acetanilides (electron-rich arenes) with acrylates, 
styrenes and even ethylene itself (Scheme 1).8a  

The resulting olefinated products 1 might serve as valuable building 
blocks. Still, the C-H activation processes of many difficult-to-activate, 
electron-poor substrates such as common carbonylated arenes have 
remained underdeveloped,9,10 especially those with an (often desired) 
oxidative character. In addition, we have recently found that benzamides and 
acetophenones constitute excellent classes of substrates for the rhodium-
catalyzed oxidative olefination reaction, resulting in the formation of a 
diverse set of styrene derivatives 2 and 3.11 Similarly, vinylic C-H bonds 
were also utilized in these olefination reactions, providing rapid access to 
functionalized diene products 4.12 

Previously, we found that tertiary benzamides are substantially more 
efficient for the ortho C-H oxidative olefination reaction than primary 
benzamides such as 5a. Indeed, 2i (the title compound) was isolated in 
83% yield (1 mmol scale, 1 mol% Rh catalyst), while 2a, the primary 
benzamide analogue was only isolated in 60% yield.11 It seems that the 
improved electron-richness of the directing group (tertiary benzamide 5i) 
was beneficial for the reaction, suggesting that the interaction between the 
directing group and the Rh catalyst is pivotal, and that it can be tuned with 
the substitution pattern of the amide (Scheme 2). Furthermore, in the case of 
unbiased benzamides, that is, when positions 2- and 3- of the arene ring are 
not protected by a bulky substituent, the di-olefination reaction leading to 
the undesired product 7 can become an issue. While primary benzamides are 
already very selective in that respect (only traces of 7a are detected, <10%), 
tertiary benzamides are found to exclusively form the mono-olefinated  
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Scheme 1.

 Rh catalyzed C-H oxidative Heck-type reaction: conditions and 
isolated yields; selected examples.8a,11,12 0.5 mol% of [RhCp*Cl2]2 and 
2 mol% AgSbF6; t-AmylOH as solvent. Ratio of coupling partners ranging 
from 1:1.5 to 1.5:1; run on scales from 0.5 to 1.0 mmol. [a] 2 bar of 
ethylene. [b] 2.5 mol% of [RhCp*Cl2]2 and 10 mol% AgSbF6. [c] Reaction 
in 1,4-dioxane. [d] Reaction run at 140 °C. [e] 4.2 equiv of Cu(OAc)2, 
3 equiv of styrene and 2.5 mol% of [RhCp*Cl2]2.  
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Scheme 2. Chemo-selectivity in the Rh catalyzed C-H oxidative Heck-type 
reaction.  
 
product (detection limit < 2%). This we think has also to do with the size of 
the directing group. Indeed, a large directing group will be less prone to 
provide the planar configuration required for an efficient second C-H 
activation, if it already has a (bulky) styryl substituent on the other 2-

position (see 2a,i). 
While investigating the suitability of our technique on a preparative 

30 mmol scale (Scheme 2), we found it experimentally convenient to 
increase the reaction concentration (from 0.20 M to 0.74 M) and very 
importantly to decrease the catalyst loading from 0.5 mol% to 0.25 mol% of 
the [Cp*RhCl2]2 precatalyst (see experimental procedure). To our surprise, 
this afforded a substantial improvement of the reaction, as the desired 
product, (E)-N,N-diethyl-2-styrylbenzamide 2i (the Z stereoisomer was not 
detected), was obtained in 92% isolated yield.  

In conclusion, we have found that tertiary benzamides, such as N,N-
diethylbenzamide, are excellent substrates for the mono-selective 
dehydrogenative/oxidative olefination reaction catalyzed by Rh, even at very 
low catalytic loadings (0.25 mol%). Because of its practicality and chemo-
selectivity, we expect that this method will find applications in organic 
synthesis.13  
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(E)-N,N-Diethyl-2-styrylbenzamide; (1269637-39-9). 
N,N-Diethylbenzamide; (1696-17-9). 
Styrene; (100-42-5). 
Pentamethylcyclopentadienylrhodium(III) chloride dimer; (12354-85-7). 
Silver Hexafluoroantimonate(V); (26042-64-8). 
Copper(II) acetate, anhydrous; (142-71-2). 
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