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 Enantioselective Alkylation of 2-[(4-

Chlorobenzyliden)Amino]Propanoic Acid tert-Butyl Ester: 

Synthesis of (R)-2-Amino-2-Methyl-3-Phenylpropanoic Acid 

tert-Butyl Ester 
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1. Procedure 

 

A. 2-[(4-Chlorobenzyliden)amino]propanoic acid tert-butyl ester. A 

200-mL, three-necked, round-bottomed flask, equipped with an overhead 

mechanical stirrer (Note 1), a 10-mL pressure-equalizing dropping funnel 

(attached to an argon inlet), and a thermometer fitted with a thermometer 

adapter, is charged with L-alanine tert-butyl ester hydrochloride (5.00 g, 

27.5 mmol, 1.05 equiv) (Notes 2 and 3), 4-chlorobenzaldehyde (3.69 g, 

26.2 mmol, 1.00 equiv) (Note 4) and toluene (25.0 mL). The mixture is 

stirred at 400 rpm and triethylamine (4.20 mL, 30.1 mmol, 1.15 equiv) (Note 

5) is added dropwise over 5 min through the dropping funnel at ambient 

temperature (Note 6). The addition funnel is removed and replaced with a 
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reflux condenser fitted with an argon inlet. The reaction mixture is heated to 

70 °C in an oil bath and stirred at 400 rpm for 4 h (Note 7). After cooling to 

ambient temperature, the reaction mixture is diluted by the addition of water 

(50 mL). The reaction mixture is transferred to a 500-mL separatory funnel 

and toluene (50 mL) is added. The organic layer is separated and washed 

with brine (2  50 mL). The organic solution is dried over sodium sulfate 

(20 g), filtered, and concentrated on a rotary evaporator (15 mm Hg, 35 °C). 

The residue is dried by stirring under reduced pressure (0.2 mm Hg) at 23 °C 

for 2 h to afford the crude aldimine product (6.66 g, , 95% yield) (Note 8) as 

an amber oil (Note 9). 

B. (R)-2-Amino-2-methyl-3-phenylpropanoic acid tert-butyl ester. A 

300-mL, three-necked, round-bottomed flask, equipped with an overhead 

mechanical stirrer, 100-mL pressure-equalizing dropping funnel capped with 

an argon inlet, and a thermometer fitted with a thermometer adapter, is 

charged with crude 2-[(4-chlorobenzyliden)amino]propanoic acid tert-butyl 

ester (6.66 g, 24.9 mmol, 1.00 equiv) (Notes 8 and 10), (S)-4,4-dibutyl-2,6-

bis(3,4,5-trifluorophenyl)-4,5-dihydro-3H-dinaphtho[2,1-c:1’,2’-e]azepin-

ium bromide (19.6 mg, 0.026 mmol, 0.001 equiv) (Note 11), benzyl bromide 

(3.74 mL, 31.4 mmol, 1.20 equiv) (Note 12) and toluene (52.4 mL). The 

mixture is stirred at 400 rpm and cooled to 0 °C in an ice-water bath.  

Aqueous cesium hydroxide solution (80 wt %, 24.5 g, 5.00 equiv) (Note 13) 

is added dropwise over 20 min through the dropping funnel (Note 14). The 

mixture is stirred for 18 h at 0 °C with constant stirring speed (400 rpm) 

under argon atmosphere (Note 15). The reaction mixture is diluted by the 

addition of water (100 mL) and the cooling bath is removed. After stirring 

for an additional 15 min at ambient temperature, the reaction mixture is 

transferred to a 500-mL separatory funnel and toluene (50 mL) is added. The 

organic layer is separated and washed with 10% aqueous sodium chloride 

solution (2  75 mL). The organic layer is dried over sodium sulfate (15 g), 

filtered, and concentrated on a rotary evaporator (15 mmHg, 35 °C). The 

pale yellow residue (10.4 g) is transferred to a 300-mL round-bottomed flask 

equipped with 3 cm egg-shaped stir bar and THF (50 mL) is added. Citric 

acid monohydrate (52.5 g, 250 mmol, 10 equiv) (Note 16) and water 

(150 mL) are added to the solution at ambient temperature. The cloudy, 

colorless mixture is stirred for 3 h at ambient temperature. The reaction 

mixture is transferred to a 500-mL separatory funnel and hexane (50 mL) is 

added. The water layer is separated and washed with hexane (2  50 mL). 

The aqueous solution is transferred to a 500-mL, three-necked, round-
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bottomed flask equipped with a 3 cm egg-shaped stir bar, 100-mL pressure-

equalizing dropping funnel, thermometer, septum, and is placed in a room 

temperature water bath. Aqueous sodium hydroxide solution (50 wt %, 39.3 

g, 26.2 mL, 18.7 equiv) is added dropwise over 25 min (Note 17). The 

mixture is stirred for an additional 15 min at ambient temperature. The 

mixture is transferred to a 500-mL separatory funnel and tert-butyl methyl 

ether (150 mL) is added. The organic layer is separated and washed with 

10% aqueous sodium chloride solution (2  75 mL). The organic layer is 

dried over sodium sulfate (15 g), filtered, and concentrated on a rotary 

evaporator (15 mm Hg, 23 °C). The residue is adsorbed onto Celite (8 g) and 

loaded as a solid onto a column (diameter: 5 cm, height: 10 cm) wet-packed 

with silica gel (100 g) (Note 18) in hexane/ethyl acetate, 4/1. Elution with a 

gradient of hexane/ethyl acetate (400 mL of each: 4:1 to 2:1 to 1:1 to 1:2) 

affords the product as a pale yellow oil [4.80 g, 78% yield (for 2 steps), 95–

97% ee for the (R)-enantiomer] (Note 19 and 20).  

 

2. Notes 

 

1. The Teflon paddle of the mechanical stirrer is 6.5 cm in length and 

1.8 cm in height. 

2.  L-Alanine tert-butyl ester hydrochloride (99%) was purchased 

from Acros Organics and used as received. This reagent is also available 

from Watanabe Chemical Industries, Ltd. and Sigma-Aldrich Co. 

3.  D-Alanine and DL-alanine tert-butyl ester hydrochloride can be 

also used as starting materials instead of L-alanine tert-butyl ester 

hydrochloride. 

4.  4-Chlorobenzaldehyde (>98.5%) was purchased from Acros 

Organics and used as received. This reagent is also available from Wako 

Pure Chemical Industries, Ltd. 

5.  Triethylamine (>99%) was purchased from Sigma-Aldrich Co. and 

used as received. This reagent is also available from Kanto Chemical Co., 

Inc. 

6.  The internal temperature was kept below 30 °C during the  

addition of triethylamine. 

7.  
1
H NMR analysis of the reaction mixture indicated nearly 

complete consumption of the starting materials. An aliquot of the reaction 

mixture (30 μL) was diluted with DMSO-d6 (0.7 mL), and analyzed by 
1
H 

NMR [4-chlorobenzaldehyde:  10.00 (ArCHO, s, 1H), aldimine product:  
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8.39 (ArCH=N, s, 1H)]. A residual amount of 4-chlorobenzaldehyde (1%) 

was observed after 4 h. 

8.  The crude aldimine product includes 1mol % of 4-

chlorobenzaldehyde (determined by 
1
H NMR analysis).  

9.  The product gradually decomposes in air at room temperature. The 

compound should be kept in a refrigerator under an inert atmosphere where 

it is stable for at least 2 weeks. The product solidifies to a low-melting, 

white solid upon storage at –20 °C. 
1
H NMR (500 MHz, DMSO-d6) : 1.34 

(d, J = 6.8 Hz, 3 H), 1.39 (s, 9 H), 4.09 (q, J = 6.6 Hz, 1 H), 7.53 (d, J = 

8.3 Hz, 2 H), 7.78 (d, J = 8.6 Hz, 2 H), 8.39 (s, 1 H); 
13

C NMR (125 MHz, 

DMSO-d6) : 19.0, 27.6, 67.1, 80.3, 128.8, 129.7, 134.6, 135.5, 161.4, 

170.9; 
1
H NMR (500 MHz, CDCl3) : 1.47 (s, 9 H), 1.48 (d, J = 7.1 Hz, 3 

H), 4.04 (q, J = 6.9 Hz, 1 H), 7.38 (d, J = 8.6 Hz, 2 H), 7.71 (d, J = 8.6 Hz, 2 

H), 8.25 (s, 1 H); 
13

C NMR (125 MHz, CDCl3) : 19.5, 28.2, 68.5, 81.4, 

128.7, 129.8, 134.6, 137.0, 161.3, 171.8; IR (neat) 2975, 2926, 2871, 1732, 

1642, 1365, 1153, 1125, 1087, 844, 824 cm
–1

. HRMS (ESI-TOF) m/z calcd 

for C14H19 ClNO2
+
: 268.1104 ([M + H]

+
). Found: 268.1108. 

10.  The full amount of crude aldimine product in procedure A was 

used for the next step (procedure B). Reagent equivalents in procedure B 

were based upon amount of 4-chlorobenzaldehyde (26.2 mmol).  

11.  (S)-4,4-Dibutyl-2,6-bis(3,4,5-trifluorophenyl)-4,5-dihydro-3H-

dinaphtho[2,1-c:1’,2’-e]azepinium bromide (Nagase purity) was purchased 

from Sigma-Aldrich Co. and used as received. This catalyst is also available 

from Kanto Chemical Co., Inc. and Strem Chemicals, Inc. 

12.  Benzyl bromide (98%) was purchased from Sigma-Aldrich Co. 

and used as received. 

13.  Cesium hydroxide solution (80 wt %) was prepared from cesium 

hydroxide monohydrate (96%) purchased from Alfa-Aesar Co. as follows: 

Cesium hydroxide monohydrate (44.81 g) was weighed into a neoprene 

bottle. The neoprene bottle was then cooled in an ice bath, followed by 

addition of distilled water (5.2 mL). The solution was shaken to incorporate 

solid into solution and allowed to stand for 2 h to ensure dissolution. The 

homogenous, colorless solution was stored in a neoprene bottle. [Caution: 

Cooling with an ice bath is necessary for preparation of 80 wt % cesium 

hydroxide solution. The dissolution of cesium hydroxide in water is very 

exothermic.] Cesium hydroxide monohydrate (>95%) is also available from 

Sigma-Aldrich Co.  
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14.  During the addition of the cesium hydroxide solution, the internal 

temperature was kept under 5 °C. 

15.  
1
H NMR analysis of the reaction mixture indicates complete 

consumption of the starting materials. An aliquot of the reaction mixture 

(30 μL) was diluted with d6-DMSO (0.7 mL), and analyzed by 
1
H NMR 

[starting aldimine substrate:  8.39 (ArCH=N, s, 1H), alkylation product:  

8.25 (ArCH=N, s, 1H)]. The checkers observed highly variable reaction 

times ranging from 18 h to 48 h to reach full conversion. 

16.  Citric acid monohydrate (>99.0%) was purchased from Sigma-

Aldrich Co. and used as received. This reagent is also available from Kanto 

Chemical Co., Inc. 

17.  Sodium hydroxide solution (50 wt %) was purchased from Acros 

Organics and used as received. This reagent is also available from Kanto 

Chemical Co., Inc. During the addition of 50 wt % sodium hydroxide 

solution, the internal temperature was kept under 37 °C. A room temperature 

water bath was necessary to control the internal temperature. 

18.  Silica gel was purchased from SiliCycle., Inc. (SiliaFlash F-60–

40/63). TLC: Rf 0.11 (hexane/EtOAc, 1:1, visualized using ninhydrin stain).  

19. Column chromatography was performed without collecting a 

forecut and 20 mL fractions were collected using 16 mm  150 mm test 

tubes. The desired product tailed significantly and was isolated from 

fractions 13 through 64 using rotary evaporation (15 mmHg, 35 °C).  

20.  The final product was obtained as a pale yellow oil but did not 

show the presence of an impurity by 
1
H NMR. The colored impurity was 

removed from a portion of the final product (1.0 mL) by Kugelrohr 

distillation at 70 °C under reduced pressure (4.3  10
-5

 mmHg) to afford a 

colorless oil (956 mg) prior to elemental analysis and further 

characterization. Characterization data for the product: [ ]
24

D = 15.3 (c = 1.0, 

CHCl3); 
1
H NMR (500 MHz, CDCl3) : 1.34 (s, 3 H), 1.46 (s, 9 H), 1.51 (br 

s, 2 H), 2.77 (d, J = 13.2 Hz, 1 H), 3.11 (d, J = 13.2 Hz, 1 H), 7.21–7.29 (m, 

5 H); 
13

C NMR (125 MHz, CDCl3) : 27.1, 28.1, 46.6, 58.9, 81.2, 126.9, 

128.3, 130.3, 137.0, 176.4; IR 3372, 3310, 2975, 2926, 1722, 1365, 1153, 

1105, 848, 737, 699 cm
–1

. HRMS (ESI-TOF) m/z calcd for C14H22NO2
+
: 

236.1651 ([M + H]
+
); Found: 236.1657. Calcd. for C14H21NO2: C; 71.46, H; 

8.99, N; 5.95. Found: C; 71.50, H; 9.14, N; 6.17. The enantioselectivity was 

determined by chiral stationary phase HPLC analysis [Daicel Chiralcel AD-

H column, 3.3% 2-propanol/hexane, 0.50 mL/min,  = 220 nm, 5.0 mg/mL, 

retention times: (R)-enantiomer (major): 13.1 min, (S)-enantiomer (minor): 
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22.4 min]. The racemate was prepared for comparison following the above 

procedure by substituting tetrabutylammonium bromide as the catalyst.  

 

Handling and Disposal of Hazardous Chemicals 

 

The procedures in this article are intended for use only by persons with 

prior training in experimental organic chemistry.  All hazardous materials 

should be handled using the standard procedures for work with chemicals 

described in references such as "Prudent Practices in the Laboratory" (The 

National Academies Press, Washington, D.C., 2011 www.nap.edu).  All 

chemical waste should be disposed of in accordance with local regulations.  

For general guidelines for the management of chemical waste, see Chapter 8 

of Prudent Practices. 

These procedures must be conducted at one's own risk.  Organic 

Syntheses, Inc., its Editors, and its Board of Directors do not warrant or 

guarantee the safety of individuals using these procedures and hereby 

disclaim any liability for any injuries or damages claimed to have resulted 

from or related in any way to the procedures herein. 

 

3. Discussion 

 

Nonproteinogenic , -dialkyl- -amino acids have played a special 

role in the design of peptides with enhanced properties. This is not only 

because they possess stereochemically stable quaternary carbon centers, but 

also their incorporation into peptides results in the significant influence on 

the conformational preferences, which eventually provides useful 

information for the elucidation of enzymatic mechanisms. Furthermore, , -

dialkyl- -amino acids themselves are often effective enzyme inhibitors and 

also constitute a series of interesting building blocks for the synthesis of 

various biologically active compounds. Accordingly, numerous studies have 

been conducted to develop truly efficient methods for their preparation,
2
 and 

phase-transfer catalysis has made unique contributions.
3 

In 1992, O’Donnell 

reported the first chiral phase-transfer-catalyzed alkylations of an alanine 

derivative by using an N-benzylcinchonium chloride with moderate 

enantioselectivity.
4
 Lygo improved the enantioselectivity for the reaction by 

using an N-9-anthracenylmethyl substituted cinchona alkaloid-derived 

catalyst.
5
 Highly enantioselective alkylation of an alanine derivative with 

broad generality of alkyl halides was achieved by using a binaphthyl-
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modified N-spiro-type chiral phase-transfer catalyst.
6
 Based on the design of 

binaphthyl-modified N-spiro-type catalysts, the very reactive high-

performance catalyst (S)-1 was developed.
7
 Most notably, the reaction 

proceeded smoothly under mild phase-transfer conditions in the presence of 

only 0.05–0.1 mol% of (S)-1 to afford the corresponding alkylation products 

with excellent enantioselectivities (Scheme 1). 

 

Scheme 1. Enantioselective Alkylation of Alanine Derivative 

N COOt-Bu +
H2N COOt-Bu
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(0.05 mol%)

CsOH•H2O
toluene

Cl

Me
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citric acid
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Me Ph

H2N COOt-Bu

Me

H2N COOt-Bu

Me

63% yield, 98% ee
(at –20 °C)

66% yield, 98% ee
(at 0 °C)

60% yield, 96% ee
(at 0 °C)  
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Appendix 

Chemical Abstracts Nomenclature; (Registry Number) 

 

2-[(4-Chlorobenzyliden)amino]propanoic acid tert-butyl ester; (142274-97-

3) 

L-Alanine tert-butyl ester hydrochloride; (13404-22-3) 

4-Chlorobenzaldehyde; (104-88-1) 

Triethylamine; (121-44-8) 

(R)-2-Amino-2-methyl-3-phenylpropanoic acid tert-butyl ester; (147714-90-

7) 

(S)-4,4-Dibutyl-2,6-bis(3,4,5-trifluorophenyl)-4,5-dihydro-3H- 

dinaphtho[2,1-c:1’,2’-e]azepinium bromide; (851942-89-7) 

Benzyl bromide; (100-39-0) 

Cesium hydroxide monohydrate; (35103-79-8) 
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