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Allenamides, especially chiral allenamides, are important synthetic 
intermediates and exist as key structural motifs in many natural products. 
We recently reported an efficient route to the formation of chiral 
allenamides that relied upon the isomerization of chiral propargylic 
oxazolidinones for the introduction of the chiral allenamide functionality.2 
More recently, the stereospecific amidation of optically enriched allenyl 
iodides using catalytic copper(I) salt and N,N-dimethylethylene-diamine as 
ligands has emerged as a facile strategy to access chiral allenamides3 

(Scheme 1) In recent years, major advances in allenamide chemistry have 
been concerned with the applications of chiral allenamides 
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to stereoselective synthesis.  These advances will be summarized in this 
article. 

 
(I) CYCLIZATION REACTIONS 

 
The ability of γ-substituted allenamides to undergo cyclization 

reactions4 using either stoichiometric TBAF or catalytic PPTS affords 
stereodivergent syntheses of 2,5-disubstituted dihydrofurans (Scheme 2). 
The resulting products were then subjected to stereoselective 
dihydroxylations demonstrating the synthetic utility of chiral allenamides 
in the stereoselective synthesis of complex molecules.  
 

 
 
Cyclization of allenamides can also proceed via a radical mechanism5 

using a combination of AlBN and n-Bu3SnH (Scheme 3). The radical 
addition reactions are highly selective for the central carbon of the allene, 
leading to an efficient preparation of nitrogen heterocycles such as 
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isoquinolines, and carbocycles such as indane and naphthalene derivatives. 
The exo-cyclization mode could also be achieved in some cases, leading to 
the synthesis of isoindoles.  

 

 
 

(II) CYCLOADDITION REACTIONS 
 

A) [2π  + 1π] CYCLOADDITIONS 
 
The Simmons-Smith cyclopropanations6 of chiral allenamides provides 

a viable strategy to obtain optically enriched amido-spiro [2.2] pentanes 
(Scheme 4). This reaction was efficient with good substrate generality, and 
represents the most direct synthesis of both chemically and biologically 
interesting amido-spiro [2.2] pentane systems. However, it suffers from 
poor diastereoselectivities for unsubstituted chiral allenamides.  For !-
substituted allenamides, the diastereoselectivity was improved, but both 
mono- and bis-cyclopropanation products were observed. 
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B) [4π  + 2π] CYCLOADDITIONS 
 
An inverse electron-demand aza [4π + 2π] cycloaddition7 was observed 

in the reaction of chiral allenamides with 1-azadienes (Scheme 5). In 
addition, it was also possible to promote a stereoselective intramolecular 
normal demand [4π + 2π] cycloaddition8 under thermal conditions without 
the need for metal catalysts (Scheme 6). Both of these works are applicable 
for the construction of highly functionalized aza-sugars and related nitrogen 
heterocycles synthesis. 

 

 
 

 
 

C) [4π + 3π] CYCLOADDITIONS 
 
The first intramolecular [4π + 3π] cycloaddition9 using nitrogen-

stabilized chiral oxyallyl cations10 was observed in the epoxidation of N-
tethered allenamides (Scheme 7). The origin of the high selectivities for the 
oxyallyl cycloadditions was postulated to originate from structure of the 
nitrogen-stabilized chiral oxyallyl cation intermediate. This strategy was 
expanded to include the chemoselective epoxidation of allenamides 
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tethered to either ! or " carbon atom of dienes11 followed by the tandem [4π 
+ 3π] cycloaddition step (Scheme 8).  

 

 
 

 
 
A highly enantioselective version of this [4π + 3π] cycloaddition was 

promoted by catalytic amounts of a chiral Lewis acid complex generated 
from Cu(OTf)2 and C2-symmetric bisoxazolines as ligands.12 High 
enantioselectivities were obtained when either unsubstituted or substituted 
furans were employed as the dienes (Scheme 9). 
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Mechanistically, it had been rationalized that the observed 
stereoselectivity for the intermolecular [4π + 3π] cycloaddition between 
nitrogen-stabilized oxyallyl cation and furan is a result of the furan 
approaching in a favorable endo manner from the less hindered bottom or 
endo-I face of the oxyallyl cation. This preference can be further enhanced 
with a bidentate metal cation such as Zn that can chelate to both the oxyallyl 
oxygen atom and the oxazolidinone carbonyl oxygen (Scheme 10).  

 

 
 

However, an unexpected reversal of diastereoselectivity was observed 
when methyl 2-furoate was employed as the diene with nitrogen-stabilized 
oxyallyl cation.13 This intriguing reversal in favor of the endo-II 
cycloaddition pathway is likely a result of the transition state minimizing 
the dipole interaction between the oxyallyl cation and ester carbonyl of 
methyl 2-furoate (Scheme 11).  
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Based on density functional theory calculations, it was further 
established that the stereo-induction for the [4π + 3π] cycloaddition between 
oxyallyl cation and unsubstituted furan is due to the stabilizing CH-# 
interactions between the incoming furan and the Ph group on the oxyallyl 
isomer (Scheme 12). These CH-# interactions cause the cycloaddition to take 
place preferentially via the more crowded face of the oxazolidinone to 
afford the product with the stereochemistry resulting from the addition via 
endo I-face.14 In the case of methyl-2-furoate, the reversal of stereoselectivity 
can be ascribed to the repulsive interactions between the Ph group and the 
2-COOMe group which outweighs the stabilizing effect of the CH-# 
interactions. As such, cycloaddition takes place preferentially through the 
less crowded transition state affording a product with stereochemistry that 
can be explained by endo II-facial attack. 

 
 
This [4π + 3π] cycloaddition reaction was further expanded to include 

the reactions between oxazolidinone-substituted oxyallyl groups and 
unsymmetrically substituted furans.15 Syn regioselectivity was observed 
when the furan has a 2-Me or 2-COOR substituent, while anti 
regioselectivity is obtained with a 3-Me or 3-COOR group (Scheme 13).  
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Finally, a practical and diastereoselective intramolecular [4π + 3π] 
cycloaddition of N-sulfonyl substituted oxyallyl cations with furans was 
also reported (Scheme 14).  Selectivity is found to depend on the tethering 
length as well as the stability of the oxyallyl cation intermediate, whether 
generated from N-carbamoyl- or N-sulfonyl-substituted allenamides.16 The 
use of chiral N-sulfonyl-substituted allenamide provided minimal 
diastereoselectivity in the cycloaddition, while high diastereoselectivity can 
be achieved with a stereocenter present on the tether.   

 

 
 

 
III. ISOMERIZATION REACTIONS 

 
The ability of allenamides to undergo regio- and stereoselective 1,3-

hydrogen shift under both acidic and thermal conditions, leads to the de 
novo preparations of 2-amido-dienes.17 This process could be rendered in 
tandem with a 6# -electron pericyclic ring closure to access cyclic 2-amido-
dienes in good overall yields directly from the respective allenamides 
(Scheme 15). Further broadening of the scope of this isomerization reaction 
leads to the development of a new torquoselective ring-closure of chiral 
amide-substituted 1,3,5-hexatrienes and its application in tandem with [4π + 
2π] cycloaddition18 (Scheme 16). The trienes were derived via either a 1,3-
hydrogen or 1,3-H–1,7-hydrogen shift of a-substituted allenamides, and the 
entire sequence through the [4π + 2π] cycloaddition could be promoted in 
tandem. 
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The efforts reported thus far unveiled an invaluable opportunity not 

only to develop a new and attractive template for conducting stereoselective 
6#-electrocyclic ring-closures, but also to achieve a highly challenging 1,6-
asymmetric induction. Indeed, a diastereoselective 6#-electrocyclic ring-
closure employing halogen-substituted 3-amidotrienes via a 1,6-remote 
asymmetric induction was subsequently reported19 (Scheme 17). This new 
asymmetric manifold for pericyclic ring-closure further underscores the 
significance of the allenamide chemistry. 
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In addition, 1,3-hydrogen shifts using allenamide20 is also applicable to 

the preparation of acyclic 2-amido-dienes and 3-amido-trienes. 
Additionally, 6#-electron electrocyclic ring-closure could be carried out 
using 3-amido-trienes to afford cyclic 2-amido-dienes, and such 
electrocyclic ring-closure could be rendered in tandem with the 1,3-
hydrogen shift, thereby constituting a facile construction of synthetically 
rare cyclic 2-amido-dienes (Scheme 18). 
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tandem with the allenamide isomerization or 1,3-hydrogen shift, leading to 
complex nitrogen heterocycles in a highly stereoselective manner (Scheme 
19). 

 
 

 
 

(IV) NATURAL PRODUCT SYNTHESIS 
 

The synthetic usefulness of the stereoselective inverse electron-demand 
[4π + 2π] cycloaddition using chiral allenamide was demonstrated in the 
formal synthesis of (+)-zincophorin. This effort describes the preparation of 
the Miyashita's intermediate which features the first synthetic application of 
a stereoselective inverse electron demand hetero  [4π + 2π] cycloaddition of 
a chiral allenamide and an interesting urea directed Stork-Crabtree 
hydrogenation (Scheme 20).22 This approach was subsequently applied for 
the construction of the Cossy’s C1-C9 subunit of (+)-zincophorin23, which 
also led to the observation of an unusual urea directed Stork-Crabtree 
hydrogenation (Scheme 21). It is noteworthy that these works represent the 
first application of chiral allenamides in natural product synthesis. 

 

20 mol % CuTC

NHMeMeHN

N
AcN

Ac

H

Ac
N

•

H

• Ac
N+

40 mol %

2 equiv Cs2CO3, 
toluene, 50 oC

xylene/decane
165 oC

H

H

1,3-H

H

I

proton sponge 
or Et3N

Scheme 19. Oppolzer's intramolecular Diels-Alder cycloaddition [IMDA] via 
γ-isomerization of N-tethered allenamides



 

Org. Synth. 2014, 91, 12-26  DOI: 10.15227/orgsyn.091.0012 23 

 
 

 
 
Finally, a highly stereoselective [4π + 3π] cycloaddition of N-substituted 

pyrroles with allenamide-derived nitrogen-stabilized chiral oxyallyl cations 
was reported which could serve as a useful approach towards the 
construction of the aza-tricyclic core of parvineostemonine24 (Scheme 22). 
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