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Procedure	
  

Caution! The carbonylation (part C) should be performed in a well-ventilated 
hood in case of a leak of carbon monoxide.  
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A. 3,4-Dihydronaphthalen-2-yl trifluoromethanesulfonate (2).  An oven-

dried, 500-mL, three-necked, round-bottomed flask equipped with a Teflon-
coated magnetic stir bar (40 x 20 mm), rubber septa (all three necks), and an 
argon inlet needle (center neck) is charged with β-tetralone (1) (4.16 mL, 
4.60 g, 31.5 mmol, 1.05 equiv) (Note 1) and tetrahydrofuran (THF) (120 mL) 
(Note 2) via syringes through a septum. The flask is cooled to −20 °C (bath 
temperature) in a cooling bath (i-PrOH/dry-ice). Potassium tert-butoxide 
(3.53 g, 31.5 mmol, 1.05 equiv) is added slowly to the solution of β-tetralone 
over 10 min (Note 3).  After completing the addition, the mixture is warmed 
to 0 °C in an ice-water bath and stirred for 1 h. Afterward, the dark-blue 
solution is cooled to −20 °C (bath temperature) in a cooling bath (i-
PrOH/dry-ice). After the septum is removed, N-
phenylbis(trifluoromethanesulfonimide) (10.7 g, 30.0 mmol, 1.00 equiv) 
(Note 1) is added over 1 min to the solution under a positive pressure of 
argon. Argon is immediately flushed into the flask and a new rubber 
septum is inserted. The mixture is warmed to 0 °C in an ice-water bath and 
stirred for 4 h. At this point, full conversion to the product is confirmed by 
TLC analysis (Note 4), and the mixture is concentrated under reduced 
pressure (40 °C, ca. 100 mmHg) to approximately one-fourth of the original 
volume in a rotary evaporator. The resulting mixture is diluted with EtOAc 
(80 mL) and H2O (80 mL), and the layers are then partitioned in a 500-mL 
separatory funnel (Note 5). The aqueous layer is extracted with EtOAc 
(80 mL × 2). The combined organic layers are washed with brine (80 mL), 
dried over anhydrous Na2SO4 (50 g) (Note 1), filtered through a 75 mL 
medium-porosity fritted funnel, and concentrated on a rotary evaporator 
under reduced pressure (40 °C, ca. 60 mmHg) to afford a black solid. The 
obtained residue is purified by column chromatography (SiO2, 
hexane/EtOAc 100/1) (Note 6) to afford 7.75-8.09 g (93-97%, 27.8-
29.0 mmol) of product 2 (Notes 7 and 8). 

B. 2,4,6-Trichlorophenyl formate (6). A 1-L, three-necked, round-bottomed 
flask is equipped with a Teflon-coated magnetic stir bar (40 x 20 mm), 
rubber septa (both side necks) and a reflux-condenser (center neck). The 
reflux-condenser is fitted with a rubber septum and an argon inlet needle.  
The flask is charged with formic acid (18.9 mL, 500 mmol, 5.00 equiv) and 
acetic anhydride (37.8 mL, 400 mmol, 4.00 equiv) (Note 1). The mixture in 
the flask is heated to 60 °C (bath temperature) in an oil bath and stirred for 1 
h. Subsequently, the mixture is cooled to 0 ºC in an ice-water bath. Toluene 
(300 mL) (Note 2), 2,4,6-trichlorophenol (5) (19.7 g, 100 mmol, 1.00 equiv), 
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and sodium acetate (8.20 g, 100 mmol, 1.00 equiv) are added to the solution 
(Notes 1 and 9). After 10 min, the ice-water bath is removed and the 
reaction is warmed to room temperature. During this time, a white 
precipitate gradually appears. The mixture is stirred for 30 min at room 
temperature. At this point, full conversion to the product is confirmed by 
TLC analysis (Note 4), and H2O (100 mL) is added to the solution, resulting 
in the dissolution of the white precipitate. The layers are partitioned in a 1-L 
separatory funnel. The organic layer is washed with H2O (100 mL × 3) and 
brine (100 mL × 2), dried over anhydrous Na2SO4 (50 g) (Note 1), filtered 
through a 75 mL medium-porosity fritted funnel, and concentrated on a 
rotary evaporator under reduced pressure (40 °C, ca. 20 mmHg) to afford a 
pale yellow oil, which crystallizes upon standing at ambient temperature. 
The obtained residue is recrystallized from hexane/EtOAc (50/1 v/v, ca. 
150 mL) (Note 10) to afford 21.0 g (93% yield, 93.1 mmol) of product 6 
(Notes 11 and 12). 

C. 2,4,6-Trichlorophenyl 3,4-dihydronaphthalene-2-carboxylate (7). An oven-
dried, 300-mL, three-necked, round-bottomed flask equipped with a Teflon-
coated magnetic stir bar (40 x 20 mm), rubber septa (all three necks), an 
argon inlet (center neck), and a bubbler (side neck) is charged with 
palladium acetate (135 mg, 0.600 mmol, 0.03 equiv) (Note 1), Xantphos 
(694 mg, 1.20 mmol, 0.06 equiv) (Note 1), and 2,4,6-trichlorophenyl formate 
(6) (5.41 g, 24.0 mmol, 1.20 equiv). The flask is evacuated and backfilled 
with argon three times. An oven-dried, 50-mL, single-necked, round-
bottomed flask is charged with 3,4-dihydronaphthalen-2-yl 
trifluoromethanesulfonate (2) (5.57 g, 20.0 mmol, 1.00 equiv) and equipped 
with a rubber septa and an argon inlet. The flask is evacuated and backfilled 
with argon three times. Then, toluene (20 mL) (Note 2) is added to the flask 
via a syringe. The triflate solution is added to the 300-mL flask via a gastight 
syringe. Toluene (10 mL x 2) (Note 2) is added to the 50-mL flask to wash its 
interior, and the washing is transferred to the 300-mL flask via the same 
syringe. After the mixture is stirred for 5 min at ambient temperature, 
triethylamine (3.33 mL, 24.0 mmol, 1.20 equiv) (Note 1) is added over 15 
min via a syringe (Note 13). During the addition of triethylamine, a slightly 
exothermic reaction ensues with gas evolution, and the brown color changes 
to black. After completing the addition, the mixture is stirred for another 2 
h. At this point, full conversion to the product is confirmed by TLC analysis 
(Note 4), and the mixture is diluted with Et2O (100 mL) and H2O (100 mL). 
The layers are partitioned in a 500-mL separatory funnel. The aqueous layer 
is extracted with Et2O (50 mL x 2). The combined organic layers are washed 
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with aqueous NaOH solution (0.5 M, 60 mL) and brine (100 mL), dried over 
anhydrous Na2SO4 (40 g) (Note 1), filtered through a 75 mL medium-
porosity fritted funnel, and concentrated under reduced pressure (40 °C, ca. 
60 mmHg) in a rotary evaporator to afford a brown oil. The obtained 
residue is purified by column chromatography (SiO2, hexane/EtOAc 100/1) 
(Note 14) to afford 6.73 g (96%, 19.1 mmol) of product 7 as a white solid 
(Notes 15 and 16). 
 
 
Notes	
  
 
1. The checkers purchased β-tetralone (98%) and Pd(OAc)2 (≥99.9% trace 

metal basis) from Sigma-Aldrich and used as received. Formic acid 
(98+%) and acetic anhydride (97+%) were purchased from Merck and 
used as received. Xantphos (98%), sodium acetate (98.5+%), anhydrous 
sodium sulfate (99+%), and potassium tert-butoxide (98+%) were 
purchased from Acros Organics and used as received. N-
Phenylbis(trifluoromethanesulfonimide) (>98.0%) and 2,4,6-
trichlorophenol (>96.0%) were purchased from Tokyo Chemical 
Industry Co., Ltd. and used as received. Triethylamine (99+%) was 
purchased from Sigma-Aldrich and distilled from CaH2 prior to use. 
The submitters purchased β-tetralone (97+%), anhydrous sodium 
sulfate (99+%), formic acid (98+%), acetic anhydride (97+%), sodium 
acetate (98.5+%), and Xantphos (98+%) from Wako Pure Chemical 
Industries, Ltd. and used as received. Potassium tert-butoxide solution 
in THF (12%, ca. 1 M), N-phenylbis(trifluoromethanesulfonimide) 
(>98.0%), and 2,4,6-trichlorophenol (>96.0%) were purchased from 
Tokyo Chemical Industry Co., Ltd. and used as received. Pd(OAc)2 
(≥99.9% trace metal basis) was purchased from Sigma-Aldrich and used 
as received. Triethylamine (99+%) was purchased from Wako and 
distilled from CaH2 prior to use. 

2. The checkers purchased THF (>99.5%) and toluene (>99.5%) from 
Sigma-Aldrich and passed it through a column of alumina before use. 
The submitters purchased dehydrated, stabilizer-free THF (>99.5% 
“Super Plus”) and dehydrated toluene (>99.5% “Super Plus”) from 
Kanto, which was purified by using a Glass Contour Solvent 
Purification Systems prior to use. 



 

Org. Synth. 2014, 90, 39-51  DOI: 10.15227/orgsyn.091.0039 
 

43 

3. The submitters equipped the 500-mL, three-necked round-bottomed 
flask with rubber septa (both side necks) and a 100 mL pressure-
equalizing addition funnel (center neck). After the 500-mL flask was 
charged with β-tetralone (1) (4.16 mL, 4.60 g, 31.5 mmol, 1.05 equiv) and 
THF (120 mL), the addition funnel was charged with a solution of 
potassium tert-butoxide in THF (ca. 1.0 M, 31.5 mL, 31.5 mmol, 
1.05 equiv) via a syringe that was then added dropwise to the solution 
of β-tetralone over 10 min.  

4. TLC analysis was performed on Merck glass plates coated with 0.25-
mm 230–400 mesh silica gel containing a fluorescent indicator. The plate 
was eluted with hexane/EtOAc (9/1) and visualized by ultraviolet 
lamp at 254 nm. The following Rf values were obtained: 3,4-
dihydronaphthalen-2-yl trifluoromethanesulfonate (0.63), 2,4,6-
trichlorophenyl formate (0.57), and 2,4,6-trichlorophenyl 3,4-
dihydronaphthalene-2-carboxylate (0.57). As for 2,4,6-trichlorophenyl 
formate, partial decomposition resulting in the appearance of a spot of 
2,4,6-trichlorophenol was observed. 

5. The interface of the two phases is difficult to recognize because of the 
deep color (organic phase: dark blue-black, aqueous phase: dark 
yellow-black). Care should be taken in the separation of the two phases. 
Additional amounts of EtOAc and H2O may lead to easier separation. 

6. Column chromatography is performed using a 7.5-cm wide, 22-cm high 
column of 270 g of Fluka Silica gel (high purity grade, 60 Å pore size, 
230-400 mesh) (The submitters used Kanto Silica Gel 60 N (spherical, 
neutral, 63–210 µm)) packed by slurring the silica gel with hexane. The 
residue is dissolved with a minimum amount of CH2Cl2 (30 mL), and 
loaded onto the column. Elution with 400 mL of hexane and then 
hexane/EtOAc (100/1) (50 mL initial collection followed by 200 mL 
fractions) afforded the production in fractions 2-24. The combined 
fractions containing the desired product are concentrated on a rotary 
evaporator under reduced pressure (40 °C, ca. 120 mmHg). 

7. The submitters reported two runs. Starting with compound 1, triflate 2 
was obtained in 97–98% yield (8.06-8.16 g, 29.0-29.3 mmol).  

8. 3,4-Dihydronaphthalen-2-yl trifluoromethanesulfonate (2) showed the 
following characterization data: Rf = 0.63 (hexane/EtOAc 9/1); 1H NMR 
(400 MHz, CDCl3) δ: 2.70 (t, J = 8.4 Hz, 2 H), 3.06 (t, J = 8.2 Hz, 2 H), 6.48 
(s, 1 H), 7.05 – 7.10 (m, 1 H), 7.12 – 7.16 (m, 1 H), 7.17 – 7.23 (m, 2 H). 13C 
NMR (100 MHz, CDCl3) δ: 26.5, 28.5, 118.5, 118.5 (q, 1JCF = 320.7 Hz), 
127.3, 127.5, 128.4, 131.1, 132.9, 149.9. 19F NMR (376 MHz, CDCl3) δ: 
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–73.6. IR (ATR, neat) cm-1: 1664, 1416, 1248, 1202, 1137, 1062, 985, 895, 
824, 753, 610. HMRS (EI): m/z calcd for C11H9F3O3S [M+] 278.0219, found 
278.0222. Elemental Analysis: Anal. Calcd. for C11H9F3O3S: C, 47.48; H, 
3.26. Found: C, 47.27; H, 3.19. This compound tends to develop a brown 
color; storage by refrigeration is recommended. 

9. The submitters reported that an exothermic reaction occurred after 
addition of sodium acetate. The checkers avoided this exotherm by 
cooling the reaction to 0 ºC prior to addition of sodium acetate.  

10. Recrystallization is performed as follows. The residue is transferred to a 
500-mL, round-bottomed flask equipped with a Teflon-coated magnetic 
stir bar (30 x 6 mm). Hexane/EtOAc (50/1 v/v, ca. 150 mL) is added to 
the flask and the flask is heated to 60 °C by an oil bath with stirring. 
After dissolution of the solid, magnetic stirring is turned off and the 
solution was allowed to cool to ambient temperature and crystallize for 
5 h. The resulting crystals were collected by suction filtration on a 
75 mL medium-porosity fritted funnel with a 250 mL round-bottomed 
receiving flask, and washed with ice-cold hexane (5 mL x 2). The 
mother liquor is concentrated on a rotary evaporator under reduced 
pressure (40 °C, ca. 20 mmHg) to give a yellow solid. A Teflon-coated 
magnetic stir bar (30 x 6 mm) and hexane/EtOAc (50/1 v/v, ca. 50 mL) 
were added to the flask and the flask was heated to 60 °C by an oil bath 
with stirring. Crystallization was carried out as described for the first 
crop. After filtration, the mother liquor, which was collected in a 
100 mL round-bottomed flask, was concentrated on a rotary evaporator 
under reduced pressure (40 °C, ca. 20 mmHg) to give a yellow solid. A 
Teflon-coated magnetic stir bar (30 x 6 mm) and hexane/EtOAc (50/1 
v/v, ca. 10 mL) were added to the flask and the flask was heated to 
60 °C by an oil bath with stirring. Crystallization was carried out as 
described for the first crop. The three crops are dried overnight in a 
desiccator at ambient temperature under vacuum (3 mmHg). 

11. The checkers completed two runs. The first run was completed on half 
the scale. Compound 6 was obtained in 95% yield (10.7 g, 47.4 mmol). 
The quantities and yields obtained from the three crops after 
recrystallization were as follows: first crop (6.90 g, 30.6 mmol, 61%), 
second crop (3.38 g, 15.0 mmol, 30%), and third crop (0.440 g, 1.95 
mmol, 4%).  For the second (full-scale) run, the quantities and yields 
obtained from the three crops after recrystallization were as follows: 
first crop (13.8 g, 61.2 mmol, 61%), second crop (6.40 g, 28.3 mmol, 28%), 
and third crop (0.88 g, 3.90 mmol, 4%).  
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12. 2,4,6-Trichlorophenyl formate (6) showed the following characterization 
data: mp 72–73 °C; Rf = 0.57 (hexane/EtOAc 9/1); 1H NMR (400 MHz, 
CDCl3) δ: 7.41 (s, 2 H), 8.28 (s, 1 H). 13C NMR (100 MHz, CDCl3) δ: 128.7, 
129.2, 132.6, 141.9, 156.2. IR (ATR, neat) cm-1: 3078, 1732, 1563, 1447, 
1385, 1227, 1085, 1057, 850, 820, 805, 678, 562. HRMS (ESI-TOF): m/z 
calcd for C7H3Cl3O2 [M+] 223.9194, found 223.9190. Elemental Analysis: 
Anal. Calcd. for C7H3Cl3O2: C, 37.29; H, 1.34. Found: C, 37.10; H, 1.40. 

13. Triethylamine should be added slowly. Fast addition of triethylamine 
causes sudden decomposition of the formate. 

14. Column chromatography is performed using a 7.5-cm wide, 22-cm high 
column of 270 g of Fluka Silica gel (high purity grade, 60 Å pore size, 
230-400 mesh) (The submitters used Kanto Silica Gel 60 N (spherical, 
neutral, 63–210 µm)) packed by slurring the silica gel with hexane. The 
residue is dissolved with a minimum amount of CH2Cl2 (30 mL), and 
loaded onto the column. Elution with 400 mL of hexane and then 
hexane/ EtOAc (100/1) (2 L initial collection followed by 200 mL 
fractions) afforded the production in fractions 10-16. The combined 
fractions containing the desired product were concentrated on a rotary 
evaporator under reduced pressure (40 °C, ca. 120 mmHg). 

15. The checkers completed two runs. The first run was completed on half 
the scale. Compound 7 was obtained in 92% yield (3.22 g, 9.14 mmol). 
The submitters reported two runs. Compound 7 was obtained as white 
needles in 94–96% yield (6.67–6.76 g, 18.9–19.1 mmol). 

16. 2,4,6-Trichlorophenyl 3,4-dihydronaphthalene-2-carboxylate (7) showed 
the following characterization data: mp 80–82 °C; Rf = 0.57 
(hexane/EtOAc 9/1); 1H NMR (400 MHz, CDCl3) δ: 2.76 (t, J = 7.9 Hz, 
2 H), 2.97 (t, J = 8.3 Hz, 2H), 7.20 – 7.35 (m, 4 H), 7.40 (s, 2 H), 7.86 (s, 
1H). 13C NMR (100 MHz, CDCl3) δ: 22.2, 27.4, 126.7, 126.9, 127.8, 128.5, 
129.0, 129.8, 130.3, 131.8, 132.0, 137.2, 139.9, 143.3, 163.5. IR (ATR, neat) 
cm-1: 1733, 1624, 1564, 1448, 1380, 1275, 1238, 1201, 1184, 1171, 1022, 958, 
855, 757, 737, 714. HRMS (EI): m/z calcd for C17H12Cl3O2 [M+H+] 
352.9897, found 352.9896. Elemental Analysis: Anal. Calcd. for 
C17H11Cl3O2: C, 57.74; H, 3.14. Found: C, 57.72; H, 3.08. 
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Handling	
  and	
  Disposal	
  of	
  Hazardous	
  Chemicals	
  
 

The procedures in this article are intended for use only by persons with 
prior training in experimental organic chemistry.  All hazardous materials 
should be handled using the standard procedures for work with chemicals 
described in references such as "Prudent Practices in the Laboratory" (The 
National Academies Press, Washington, D.C., 2011 www.nap.edu).  All 
chemical waste should be disposed of in accordance with local regulations.  
For general guidelines for the management of chemical waste, see Chapter 8 
of Prudent Practices.  

These procedures must be conducted at one's own risk.  Organic 
Syntheses, Inc., its Editors, and its Board of Directors do not warrant or 
guarantee the safety of individuals using these procedures and hereby 
disclaim any liability for any injuries or damages claimed to have resulted 
from or related in any way to the procedures herein. 
 
 
Discussion	
  
 
 Palladium-catalyzed carbonylation of organic (pseudo)halides 
employing carbon monoxide (CO) has received much attention because of 
its versatility for the synthesis of carbonyl-containing compounds.2 One of 
the major drawbacks to this methodology is the use of CO in gaseous form, 
which is highly toxic, and, can, therefore, be problematic for production on 
both laboratory and multikilogram scales. A simple solution to this problem 
involves replacing gaseous CO with another, less toxic, carbonyl source.  
Given the increasing demand for CO surrogates, several carbonyl sources 
have been developed.3 Aldehydes can be decomposed through transition 
metal catalysis to generate CO.4 Formic anhydrides5 and formic esters6 are 
also known to produce CO in the presence of a transition metal or a strong 
base. However, these CO surrogates require high temperatures or harsh 
reaction conditions to promote the generation of CO, making them less 
attractive. Although metal carbonyl complexes have been reported to 
generate CO by thermal decomposition using a microwave,7 the need for a 
large excess of the complex is unfavorable for handling and poses 
environmental issues. Recently, 9-methylfluorene-9-carbonyl chloride8 and 
silacarboxylic acid9 have been reported as CO precursors. However, tedious 
procedures are required for their synthesis, and a special two-chamber 
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system must be used for the carbonylation reaction. It is noted that 
acylpalladium precatalyst works well in hydroxycarbonylation of aryl 
halides using potassium formate as a CO source.10 

We have recently developed a Pd-catalyzed external-CO-free 
carbonylation of aryl, alkenyl, allyl halides, and sulfonates by using phenyl 
formate as a phenoxycarbonylating source.11–13 This method is based on the 
finding that phenyl formate can undergo facile decarbonylation in the 
presence of weak base such as triethylamine to afford CO and phenol, 
which subsequently react with an electrophile. 

Though aryl formates easily decompose to generate CO in the presence 
of tertiary amines, alkyl formates do not.11 The rate of decomposition 
increases as electron-withdrawing groups are introduced into the aromatic 
rings of aryl formates.14 

Among the aryl formates with electron-withdrawing groups, 2,4,6-
trichlorophenyl formate was found to have the potential to promote the 
external-CO-free carbonylation reaction under much milder conditions, i.e., 
at ambient temperature.14 2,4,6-Trichlorophenyl formate is a stable 
crystalline compound and is easily accessible from 2,4,6-trichlorophenol, an 
inexpensive chemical feedstock.15 It allows mild and fast 
aryloxycarbonylation of aryl iodides and alkenyl 
trifluoromethanesulfonates (triflates) to afford the corresponding 2,4,6-
trichlorophenyl esters in excellent yields. In the case of large-scale synthesis, 
the reaction proceeds without any difficulties, although adjustment of the 
rate of addition of triethylamine is recommended to prevent sudden 
decomposition of the formate. Because the reaction does not require toxic 
gaseous CO or pressure-resistant apparatus, the experimental procedure 
disclosed herein is safer and more practical than those that use CO gas or 
other CO surrogates, as mentioned above.  

Furthermore, 2,4,6-trichlorophenyl formate can be regarded as 
“weighable CO.” This additional merit is ascribed to the ease of adjusting 
the amount of CO. Its chemical nature to produce CO under very mild 
conditions has potential to be applied to various organic reactions using CO 
as a reactant or a ligand.  

Because products obtained via this method are esters with highly 
electrophilic nature, further derivatization can easily be achieved. As 
described in our previous paper,14 trichlorophenyl esters can react with a 
slight excess quantity of nucleophiles, resulting in successful conversion 
into various compounds, including alkyl esters, thioesters, carboxylic acids, 
and amides. One-pot syntheses from (pseudo)halides to amides have also 
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been demonstrated.13 Analogous one-pot reactions have been shown to be 
feasible with other nucleophiles. When a nucleophile is used to release 2,4,6-
trichlorophenol as a by-product, simple washing with diluted aqueous 
NaOH solution is sufficient for removal of 2,4,6-trichlorophenol. This 
characteristic further increases the practicality of the reaction protocol. 
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Appendix	
  
Chemical	
  Abstracts	
  Nomenclature	
  (Registry	
  Number)	
  

 
β-Tetralone: 2(1H)-Naphthalenone, 3,4-dihydro-; (530-93-8) 

Potassium tert-butoxide: 2-Propanol, 2-methyl-, potassium salt (1:1);  
(865-47-4) 

N-Phenylbis(trifluoromethanesulfonimide): Methanesulfonamide, 1,1,1-
trifluoro-N-phenyl-N-[(trifluoromethyl)sulfonyl]-; (37595-74-7) 

3,4-Dihydronaphthalen-2-yl trifluoromethanesulfonate: Methanesulfonic 
acid, 1,1,1-trifluoro-, 3,4-dihydro-2-naphthalenyl ester; (143139-14-4) 

Formic acid; (64-18-6) 
Acetic anhydride: Acetic acid, 1,1'-anhydride; (108-24-7) 
2,4,6-Trichlorophenol: Phenol, 2,4,6-trichloro-; (88-06-2) 
Sodium acetate: Acetic acid, sodium salt (1:1); (127-09-3) 

2,4,6-Trichlorophenyl formate: Phenol, 2,4,6-trichloro-, 1-formate;  
(4525-65-9) 

Palladium acetate: Acetic acid, palladium(2+) salt (2:1); (3375-31-3) 
Xantphos: Phosphine, 1,1'-(9,9-dimethyl-9H-xanthene-4,5-diyl)bis[1,1-

diphenyl- ; (161265-03-8) 
2,4,6-Trichlorophenyl 3,4-dihydronaphthalene-2-carboxylate: 2-

Naphthalenecarboxylic acid, 3,4-dihydro-, 2,4,6-trichlorophenyl ester; 
(1402012-58-1) 
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