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Caution! A protection shield should be placed in front of the reaction set-up used 
for the preparation of (Z)-1-benzoyloxy)-1-octene. 

 
A. 2-(Diphenylphosphino-methyl) pyridine (DPPMP). A dry argon-

flushed (Notes 1 and 2) 250 mL round-bottomed Schlenk-flask (Note 3) 
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containing a magnetic stirring bar (oval, 30 x 16 mm) is charged with THF 
(75 mL) (Notes 4 and 5). 2-Picoline (7.40 mL, 6.98 g, 75.0 mmol) (Note 6) is 
added by syringe (Note 5) at rt. The solution is cooled to –50 °C (Note 7). 
Subsequently, a solution of nBuLi (30.0 mL, 2.5 M in hexane, 75.0 mmol, 
1 equiv) (Note 8) is added dropwise by syringe over 1 h (Note 9). The 
reaction mixture is then stirred at –20 °C (Note 7) for 1.5 to 2 h. Meanwhile, 
a solution of TMSCl (9.50 mL, 8.13 g, 75.0 mmol, 1.0 equiv) (Note 10) in THF 
(10 mL) (Notes 4 and 5) is prepared in a dry argon-flushed (Notes 1 and 2) 
250 mL round-bottomed Schlenk-flask (Note 3) containing a magnetic 
stirring bar (oval, 30 x 16 mm) and cooled to –20 °C (Note 7). The solution of 
deprotonated 2-picoline is then transferred via cannula (Note 11) to the 
TMSCl solution over a period of 2 h (Figure 1). After complete addition, the  
 

 
Figure 1. The red solution of deprotonated 2-picoline (left) is 

transferred via cannula to the solution of TMSCl (right) 
 
 

 
Figure 2. Reaction mixture after complete addition of deprotonated 2-

picoline to TMSCl 
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flask of the 2-picoline solution is rinsed with THF (10 mL) (Notes 4 and 5) 
and this solution is also transferred by cannula. The reddish reaction 
mixture (Note 12) is allowed to warm to rt and stirred overnight (Figure 2). 
The reaction flask is equipped with a distillation apparatus (Note 13), and 
solvent and unreacted TMSCl are removed by distillation at ambient 
pressure. The residue is transferred by syringe to a 50 mL round-bottomed 
flask and fractionally distilled at 90 °C under reduced pressure of 20 mmHg 
(Note 14) (Figure 3) to afford 2-[(trimethylsilyl)methyl]pyridine as colorless 
oil (9.57 g, 57.9 mmol, 77%) (Note 15). 
 

 
Figure 3. Distillation apparatus for the purification of  

2-[(trimethylsilyl)methyl]pyridine 
 

A dry argon-flushed (Notes 1 and 2) 250 mL round-bottomed Schlenk-
flask (Note 3) containing a magnetic stirring bar (oval, 30 x 16 mm) is 
charged by syringe with 2-[(trimethylsilyl)methyl]pyridine (8.83 g, 
53.4 mmol) and THF (45 mL) (Notes 4 and 5). The solution is cooled to  
–20 °C (Note 7) and PPh2Cl (10.6 mL, 13.0 g, 58.8 mmol, 1.1 equiv) (Note 16) 
is added by syringe (Note 5) over 10 min. The reaction mixture is stirred at  
–20 °C for 1 h, allowed to warm to rt and stirred overnight. Then HCl (2.0 M 
in Et2O, 30 mL, 60 mmol, 1.1 equiv) (Note 5) (Note 17) is added over 5 min 
at 0 °C (Note 18). The mixture is stirred for 1 h before the solvent is carefully 
removed while being connected to oil pump vacuum (0.15 mmHg). The 
residue is recrystallized (Note 19) (Figures 4, 5, and 6) from EtOH 
(Notes 20 and 21) and Et2O (Note 21) to afford 2-((diphenylphosphino)-
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methyl)pyridine hydrochloride (DPPMP•HCl) as acicular crystals (12.0 g, 
38.2 mmol, 72%) (Note 22). 

 

 
Figure 4. Crystal formation of DPPMP•HCl in EtOH overlaid by Et2O 

 

 
Figure 5. Crystals of DPPMP•HCl in EtOH/Et2O 

 

 
Figure 6. Crystals of DPPMP•HCl after removal of the solvents 

 
A dry, argon-flushed (Notes 1 and 2) 50 mL round-bottomed Schlenk-

flask (Note 3) containing a magnetic stirring bar (cylindric, 15 x 4.5 mm) is 
charged with NaHCO3 (368 mg, 4.38 mmol, 2.2 equiv) (Note 23). Distilled 
water (25 mL) (Note 20) is added by syringe and the mixture stirred at rt 
until the salt is completely dissolved. Meanwhile, an argon-flushed 100 mL 
round-bottomed Schlenk-flask containing a magnetic stirring bar (cylindric, 
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20 x 6 mm) is charged with DPPMP•HCl (627 mg, 2.00 mmol) (Note 24). 
Dichloromethane (33 mL) (Note 25) is added by syringe to give a clear 
colorless solution. The aqueous solution of NaHCO3 is added by syringe 
and the biphasic mixture is vigorously stirred for 30 min. The organic layer 
is transferred by syringe to an argon-flushed 50 mL round bottomed 
Schlenk-flask (Note 3). The organic layer is washed with distilled water 
(10 mL) (Note 21), carefully concentrated and dried under oil pump 
vacuum (0.15 mmHg). The free ligand 2-((diphenylphosphino)-
methyl)pyridine is obtained as a colorless solid (546 mg, 1.97 mmol, 99%) 
(Notes 26 and 27). 

B. (Z)-1-(Benzoyloxy)-1-octene. A dry argon-flushed (Notes 1 and 2) 
120 mL Teflon screw cap pressure vessel (Note 28) containing a magnetic 
stirring bar (cylindric, 20 x 6.0 mm) is charged with [Rh(COD)acac] (248 mg, 
0.800 mmol, 2.0 mol%) (Note 29), 2-(diphenylphosphino-methyl) pyridine 
(DPPMP, 222 mg, 0.8 mmol, 2.0 mol%) and benzoic acid (4.88 g, 40.0 mmol) 
(Note 30) in a glove box. Degassed anhydrous THF (62 mL) (Notes 4 and 5) 
is added, the flask sealed (Note 31), and immediately immersed in a 
pre-heated oil bath (bath temperature 50 °C) outside of the glove box. The 
yellow mixture (Figure 7) is stirred for 30 min and then allowed to cool 
down to rt (Note 32). 1-Octyne (8.85 mL, 6.61 g, 60.0 mmol,  
 

 
Figure 7. Reaction mixture before addition of 1-octyne 

 
1.5 equiv) (Note 33) is added in the glove box, the flask sealed (Note 31), 
and immediately immersed in a pre-heated oil bath (bath temperature 
110 °C) outside of the glove box. The mixture turns orange (Figure 8) while  
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Figure 8. Reaction mixture after addition of 1-octyne and heating 

 
being stirred for 4 h. After cooling to rt for 25 min, the  
mixture is filtered through a pad of silica gel (30 x 70 mm) (Note 34) and 
eluted with ethyl acetate (3 x 20 mL) (Note 35) to separate the catalyst. The 
solvent is removed under reduced pressure first on a rotary evaporator 
(225 mmHg down to 15 mmHg, bath temperature 40 °C), then under oil 
pump vacuum (0.2 mmHg, room temperature) and the crude product 
(Note 36) purified by column chromatography on silica gel (100 x 120 mm, 
eluent pentane : dichloromethane = 5:1, Rf = 0.3) (Note 37). The solvents are 
removed under reduced pressure first on a rotary evaporator (600 mmHg 
down to 15 mmHg, bath temperature 40 °C), then under oil pump vacuum 
(0.2 mmHg, room temperature) to furnish (Z)-1-(benzoyloxy)-1-octene 
(8.67 g, 37.3 mmol, 93%) (Note 38) as a light orange oil (Note 39). 
 
 

 
 Vessels are dried by heating with the heat gun for 2 minutes while 

connected to the oil pump vacuum (0.15 mmHg). 
 Argon 5.0 from Sauerstoffwerke Friedrichshafen. 
 Equipped with a rubber septum and connected to argon.  
 THF (anhydrous, >99.9%, inhibitor-free) was purchased from Sigma 

Aldrich. 
 A syringe purchased from Henke Sass Wolf is flushed with argon three 

times and used for the addition. 
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 2-Picoline (98% purity) was purchased from Aldrich and distilled at 
75 °C under 150 mmHg. The freshly distilled colorless 2-picoline was 
removed under an Argon counter flow. A yellowish oil remained in the 
flask. 

 Cooling was performed using a dry ice/ethanol bath. 
 nBuLi (2.5 M in hexane) was purchased from Sigma Aldrich. The 

concentration was checked by titration using N-(o-tolyl)pivalamide 
(Suffert’s reagent) prior to use.2 

 The previously colorless solution turns orange and finally ruby red. 
 Chlorotrimethylsilane (≥98.0%) was purchased from Sigma Aldrich 

and distilled at 57 °C under argon prior to use. 
 The picoline flask is attached to a continuous argon flow. A stainless 

steel cannula is used for the transfer.  
 The reaction mixture turns yellowish then reddish after complete 

addition of 2-picoline. 
 The distillation apparatus consists of a Claisen stillhead, a fused Liebig 

condenser (10 cm) and a fused vacuum connection. Solvent and TMSCl 
are distilled off at about 65 °C (oil bath temperature 85 °C) at ambient 
pressure. The distillates are collected in a 100 mL flask. 

 A Vigreux column (10 cm) is attached and 2-[(trimethylsilyl)methyl]-
pyridine is distilled at 90 °C (oil bath temperature 150 °C) and 
22 mmHg. The distillates are separated via a multi limb delivery 
adapter and collected in suitable flasks (Figure 3). 

 A second run on the same scale provided 9.74 g (79%) of the same 
material. 2-[(trimethylsilyl)methyl]pyridine exhibits the following 
spectroscopic properties: 1H NMR (400 MHz, CDCl3) δ: 0.00 (s, 9H), 
2.33 (s, 2H), 6.90–6.98 (m, 2H), 7.47 (dt, J = 7.6, 2.0 Hz, 1H), 8.41 (bd, 
J = 5.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: –1.70, 30.31, 119.10, 
122.12, 135.78, 149.01, 161.35; ESI-HRMS (m/z) calcd. for C9H16NSi 
[M+H]+ 166.10465, found 166.1039. 

 Chlorodiphenylphosphine (96% purity) was purchased from Sigma 
Aldrich and distilled at 90 °C (oil bath temperature 150 °C) at 
0.004 mmHg. 

 HCl (2.0 M in Et2O) was purchased from Sigma Aldrich and used as 
received. 

 Cooling is performed using an ice-water bath. 
 The residue is dissolved in a minimum amount of EtOH (70 to 100 mL) 

and carefully overlaid with Et2O (EtOH:Et2O = 1:1) (Figure 4). After 
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crystallization overnight at rt (Figure 5), the mother liquor is 
transferred via cannula to another 250 mL round-bottomed Schlenk-
flask and 2-((diphenylphosphino)methyl)-pyridine hydrochloride is 
afforded in acicular crystals (8.90 g, 28.4 mmol) (Figure 6). The mother 
liquor was concentrated under oil pump vacuum (0.15 mmHg) and the 
residue recrystallized overnight at rt from a minimum amount of EtOH 
(50 mL) and carefully overlaid with Et2O (EtOH:Et2O = 1:2) to give 
more DPPMP•HCl (2.30 g, 7.3 mmol). 

 Absolute anhydrous EtOH was purchased from Sigma Aldrich. 
 The solvent is degassed by bubbling argon through the solvent using a 

cannula for 30 min while being stirred.  
 2-((Diphenylphosphino)methyl)pyridine hydrochloride exhibits the 

following spectroscopic and physical properties: NMR samples should 
be prepared in degassed solvents. The solvent (~3 mL) is degassed by 
bubbling argon through the solvent for 5-10 min. 1H NMR (400 MHz, 
CD2Cl2) δ: 4.19 (s, 2H), 7.34–7.39 (m, 1H), 7.40–7.45 (m, 6H), 7.55–7.61 
(m, 4H), 7.61–7.67 (m, 1H), 8.11 (dt, J = 8.0, 1.6 Hz, 1H), 8.51 (dd, J = 5.8, 
1.0 Hz, 1H); 13C NMR (101 MHz, CD2Cl2) δ: 33.3, 123.8, 127.2, 128.8, 
129.7, 133.1, 135.3, 140.4, 144.4, 155.7; 31P NMR (121 MHz, CD2Cl2) δ:  
–4.66; ESI-HRMS (m/z) calcd. for C18H17NOP [M-Cl+O+H]+ 294.10422, 
found 294.1036.  

 NaHCO3 was purchased from Fisher Chemical and used as received. 
 After being charged with the DPPMP•HCl the flask is evacuated and 

filled with argon three times, equipped with a septum and an argon 
line. 

 Anhydrous dichloromethane from Sigma Aldrich and used as received 
after degassing by bubbling argon for 15 minutes. 

 2-((Diphenylphosphino)methyl)pyridine exhibits the following 
spectroscopic and physical properties: mp 57–58 °C; 1H NMR 
(400 MHz, CD2Cl2) δ: 3.54 (s, 2H), 6.89-6.99 (m, 2H), 7.21-7.26 (m, 6H), 
7.31-7.42 (m, 5H), 8.33-8.38 (m, 1H); 13C NMR (101 MHz, CD2Cl2) 
δ: 38.5, 120.9, 123.6, 128.4, 128.7, 132.8, 136.0, 138.3, 149.2, 158.2; 

31P NMR (121 MHz, CD2Cl2) δ: –11.12.; ESI-HRMS (m/z) calcd. for 
C18H17NP [M+H]+ 278.10931, found 278.1095.  

 The ligand DPPMP is sensitive to oxidation when being stored over a 
longer period of time. Therefore, the authors recommend releasing the 
required amount of free ligand from the HCl salt shortly before the 
catalysis. The pure ligand should be stored under argon. The oxide 
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may be separated by filtration over silica gel under inert atmosphere 
using degassed dichloromethane. 

 Pressure vessel was purchased from Chem Glass.  
 [Rh(COD)acac] (elemental Rh (ICP): 32.99%, [Rh(COD)Cl]2 < 0.1%) was 

purchased from Alfa Aesar and used as received. 
 Benzoic acid (>99.5% purity) was purchased from Sigma Aldrich and 

used as received. 
 The cap was screwed back on tightly. A protection shield should be 

placed in front of the reaction apparatus. 
 The cooling required 15 minutes. 
 1-Octyne (98% purity) was purchased from Alfa Aesar and filtered over 

a pad of basic alumina (30x 20 mm) prior to use. The basic alumina was 
purchased from Sigma Aldrich. 

 Silica gel 60, 230-400 mesh (Fisher Chemical) is used as stationary 
phase.  

 Ethyl acetate of technical grade is used after evaporation and 
recollection of the solvent in the receiving flask of a rotary evaporator 
(200 mmHg, bath temperature 50-60 °C). 

 The ratio anti-Markovnikov-Z (AM-Z):anti-Markovnikov-E (AM-
E):Markovnikov (M) = 92:4:4 is determined by 1H NMR analysis.3 An 
enyne-byproduct from homocoupling of 1-octyne is observed. 

 The product is purified by flash chromatography through silica gel 
using a Teledyne Isco CombiFlash Rf (120 g column, from Silicycle) 
with hexane:dichloromethane = 5:1 as eluent. The product is typically 
found in fractions 11-39 via TLC analysis on silica gel 
(hexane:dichloromethane = 5:1, Rf = 0.3, visualization with KMnO4 
stain). 

 A second run on the same scale provided 8.49 g (91%) of the same 
products. The enyne-byproduct was separated and not observed in the 
1H NMR product spectrum after column chromatography. A ratio 
AM-Z:AM-E:M = 94:1:4 was determined by 1H NMR analysis. 
Quantitative NMR (500 MHz, CDCl3, 1,3,5-trimethoxybenzene (≥ 99% 
purity, Sigma Aldrich)) delivers a purity of >96 wt% with a ratio of 
AM-Z:AM-E:M = 95:1:4. 1H NMR (500 MHz, CDCl3) δ: 0.84–0.91 (m, 
3H), 1.26–1.40 (m, 6H), 1.40–1.49 (m, 2H), 2.29 (dq, J = 7.5, 1.5 Hz, 2H), 
7.24–7.28 (m, 1H), 7.45–7.50 (m, 2H), 7.62–7.57 (m, 1H), 8.09–8.13 (m, 
2H); 13C NMR (125 MHz, CDCl3) δ: 14.1, 22.6, 24.6, 28.9, 29.2, 31.7, 115.0, 
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128.5, 129.5, 129.9, 133.4, 134.2, 163.6; ESI-HRMS (m/z) calcd. for 
C15H24NO2 [M+NH4]

+ 250.18015, found 250.1798. 
 If product with higher purity is desired, the product (7.47 g) is distilled 

at 75 °C at 0.4 mmHg to provide a colorless oil (7.02 g, 94%). 
Quantitative NMR (500 MHz, CDCl3, 1,3,5-trimethoxybenzene (≥ 99% 
purity, Sigma Aldrich)) delivers a purity of >96 wt% with a ratio of AM-
Z:AM-E:M = 95:1:4. The distillation apparatus consists of a 25 mL 
round-bottomed flask connected to a Claisen stillhead, a fused Liebig 
condenser (5.5 cm) with fused vacuum adapter and a multi-limb 
delivery adapter with three 10 mL flasks (Figure 9). 

 

  
Figure 9: Distillation apparatus for further purification of the product 

 
 

 
The procedures in Organic Syntheses are intended for use only by 

persons with proper training in experimental organic chemistry.  All 
hazardous materials should be handled using the standard procedures for 
work with chemicals described in references such as "Prudent Practices in 
the Laboratory" (The National Academies Press, Washington, D.C., 2011; 
the full text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  
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In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no 
significant hazards are associated with the chemicals involved in that 
procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards 
associated with each chemical and experimental operation on the scale that 
is planned for the procedure.  Guidelines for carrying out a risk assessment 
and for analyzing the hazards associated with chemicals can be found in 
Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as 
published and are conducted at one's own risk.  Organic Syntheses, Inc., its 
Editors, and its Board of Directors do not warrant or guarantee the safety of 
individuals using these procedures and hereby disclaim any liability for any 
injuries or damages claimed to have resulted from or related in any way to 
the procedures herein. 

 
Enol esters are versatile building blocks in organic synthesis, finding 

application as substrates in a wide range of reactions such as acylations,4 
asymmetric epoxidations,5 cyclopropanations6 and hydroformylations7 
besides being important monomers for polymerisation.8 Moreover, the enol 
ester motif is found in several biologically active natural products such as 
Phenochalasin B9 and Grenadadiene.10 Since the first report on a ruthenium-
catalyzed addition of carboxylic acids to an alkyne by Shvo et al. in 1983,11 
several other intermolecular methodologies were developed employing 
iridium,12 rhenium,13 palladium,14 gold15 as well as an intramolecular 
rhodium-catalyzed synthesis of alkylidene lactones.16 

While these mostly lead to Markovnikov (M) or anti-Markovnikov (AM-
E) addition, our recently reported atom- and redox-economic rhodium-
catalyzed hydro-oxycarbonylation17 leads selectively to the Z-enol ester 
(AM-Z) in high yields in a reaction time of 16-24 hours. Recently, the 
methodology was successfully applied in natural product synthesis by 
Burke et al. in the total synthesis of Patulolide C.18 

Following our first report employing the [Rh(COD)Cl]2/DPPMP 
catalyst system, further investigations have led to a more active 
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Rh(COD)acac/DPPMP catalyst system, which furnishes the desired Z-enol 
esters in equally high yields and selectivities however with a reduced 
reaction time of only 4 hours.19 Furthermore, this novel catalyst system 
employed in the herein reported protocol was found to be compatible with 
a wide range of functionalities (Table 1). 

 
Table 1. Further Z-enol esters prepared using this protocol20 

 
 

As a result of the milder reaction conditions, this improved 
methodology is highly suitable for the synthesis of Z-enol esters containing 
sensitive moieties such as the enol ester derived from p-bromo benzoic acid. 
In addition, the compatibility with commonly employed protecting groups 
such as trityl, TBDMS and N-phthalimide reinforces the applicability of our 
methodology in total synthesis. 

In conclusion, the catalyst systems developed by us show 
complementary functional group compatibility, allowing for a broad 
application of the rhodium-catalyzed hydro-oxycarbonylation in organic 
synthesis. 
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2-[(trimethylsilyl)methyl]pyridine, 1H-NMR (CDCl3, 400 MHz) 
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2-[(trimethylsilyl)methyl]pyridine, 13C-NMR (CD2Cl2, 101 MHz) 
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DPPMP.HCl, 1H-NMR (CD2Cl2, 400 MHz) 
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DPPMP.HCl, 13C-NMR (CD2Cl2, 101 MHz) 
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DPPMP.HCl, 31P-NMR (CD2Cl2, 121 MHz) 
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DPPMP, 1H-NMR (CD2Cl2, 400 MHz) 
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DPPMP, 13C-NMR (CD2Cl2, 101 MHz) 
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DPPMP, 31P-NMR (CD2Cl2, 121 MHz) 
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1H NMR (500 MHz, CDCl3) spectrum of the crude product of the Rh-catalyzed addition of benzoic acid and 1-octyne with indication of the AM-E : 
enyne : AM-Z ratio in CDCl3
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(Z)-1-(Benzoyloxy)-1-octene, 13C NMR (125 MHz, CDCl3) 
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Quantitative 1H NMR (500 MHz, CDCl3) of (Z)-1-(benzoyloxy)-1-octene (AM-Z) using 1,3,5-trimethoxybenzene after purification via column 
chromatography (14.8 mg product + 12.3 mg 1,3,5-trimethoxybenzene) 
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(Z)-1-(Benzoyloxy)-1-octene, 13C NMR (125 MHz, CDCl3) 
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Quantitative 1H NMR (500 MHz, CDCl3) of (Z)-1-(benzoyloxy)-1-octene (AM-Z) after purification via distillation using 1,3,5-trimethoxybenzene 
(23.7 mg product + 20.9 mg 1,3,5-trimethoxybenzene) 
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