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Monofluoromethylation is an important transformation that has been 
employed as a strategy to introduce fluoroalkyl functionalities into 
molecules.2 Among the known reactions, nucleophilic 
monofluoromethylation stands out as an important approach in which a 
fluoroalkyl anion is generated and reacted with a suitable electrophile. 
Fluorobis(phenylsulfonyl)methane (FBSM) has been widely employed as a 
pronucleophile given that the electron-withdrawing nature of the 
phenylsulfonyl groups increases the acidity of the proton in the adjacent 
carbon atom, making its deprotonation facile and giving rise to a resonance-
stabilized fluoromethide species3 that can react with several electrophiles. 
This compound was first synthesized by Shibata et al., through the 
electrophilic fluorination of bis(phenylsulfonyl)methane4 and was later used 
as a nucleophilic monofluoromethylating reagent. Prakash and coworkers 
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envisioned a large-scale procedure to synthesize FBSM in reagent quantities 
(Figure 1).5 

Figure 1. Prakash’s large-scale synthesis of FBSM 

The present addendum discloses the transformations available 
employing FBSM as a monofluoromethylation reagent (Scheme 1). 

Scheme 1. FBSM as a masked nucleophile 
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Michael Reactions with FBSM 
 
Michael reactions are one of the most important synthetic avenues to 

impart structural complexity to organic molecules. The acidity of FBSM 
enables its facile deprotonation even when using mild bases, with the 
resultant anion being a good nucleophile which has been reacted with a 
variety of Michael acceptors, furnishing C-protected monofluoromethyl 
compounds. One of the earliest of such transformations was performed by 
Prakash and coworkers in 2008 (Scheme 2).6 The authors prepared and 
screened a variety of fluoro(phenylsulfonyl)methanes, with the third 
substituent being a phenylsulfonyl, nitro, cyano, ester or ketone group. In 
reactions with a,b-unsaturated compounds, trimethylphosphine was found 
to be the most efficient catalyst, furnishing the desired products in moderate 
to excellent yields (Scheme 2a). The reaction is proposed to proceed via initial 
addition of the electron-rich phosphine to the electrophilic carbon of the 
Michael acceptor, producing the active base: a b-phosphonio enolate. Note 
that analogous intermediates are well documented in the Morita-Baylis-
Hillman reaction. Deprotonation of FBSM by the formed base, followed by 
subsequent attack of the newly-formed nucleophile at the C–P+ carbon results 
in the formation of the desired products, along with the regeneration of the 
phosphine catalyst (Scheme 2b). 
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Scheme 2. Phosphine-catalyzed FBSM addition to  a,b-
unsaturated compounds 

 
Shortly after this seminal work, Hu and coworkers investigated FBSM-

type molecules as pronucleophiles in the fluoromethylation of a,b-
unsaturated ketones, arynes, and alkynes.7 Each transformation provided a 
mixture of products, with the ratio of formed species dependent on the 
hardness/softness of the nucleophile (Scheme 3). 
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Scheme 3. Addition of FBSM to arynes, alkynes and a,b-
unsaturated ketones 

 
A reaction system for the long-elusive chiral monofluoromethylation 
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Scheme 4. Chiral monofluoromethylation of a,b-
unsaturated ketones with FBSM 

 
Chiral enamine catalysis has been extensively employed in the 

asymmetric functionalization of aldehydes and ketones (Scheme 5). In 2009, 
the Wang group documented an asymmetric conjugate addition of FBSM to 
enals, catalyzed by a chiral proline derivative.9 The active electrophile; the in-
situ formed a,b-unsaturated iminium ion; is trapped by FBSM to form a 
b- substituted enamine. Subsequent hydrolysis of the enamine (loss of the 
proline derivative) affords the desired products in moderate to good yields 
and in excellent enantiomeric excess. Adding to the slew of enantioselective 
fluoromethylations of Michael acceptors, Córdova and coworkers added 
FBSM to 1,2-enals using chiral proline-type catalysts,10 similar to the work of 
Wang and coworkers.9 The authors used an  –OTMS-containing catalyst in 
place of an –OTBS-containing one, generating the desired monofluoromethyl 
compounds in good yields. At the same time, Rios and coworkers also 
published a near-identical synthesis of b-monofluoromethyl aldehydes.11 
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Another method for the enantioselective conjugate addition of FBSM to 
a,b-unsaturated ketones comes in the form of the 2009 paper by Kim and 
coworkers, wherein chiral primary amine catalysts were used to steer the 
stereochemical outcome of the reaction towards one enantiomer 
(Scheme 6).12 The thus formed products were obtained in moderate 
stereoselectivity and good to excellent yields. Noteworthy is the work of Hu 
and coworkers on the reversibility of 1,2-additions of FBSM across a,b-
unsaturated carbonyl compounds, wherein the formation of 1,4-adducts was 
observed following the disappearance of the 1,2-adducts.13 

 

 
 

Scheme 6. b-Monofluoromethyl ketones via chiral primary 
amine catalysis 
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converse process had not been studied (the conversion of an enamine to an 
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generated enamines were oxidized by a hypervalent iodine compound (IBX) 
(Scheme 7). The thus formed iminium ions were then reacted with FBSM, 
generating b-fluoromethyl compounds, which were then reduced to the 
corresponding alcohols using NaBH4.14 

 

 
Scheme 7. IV-mediated oxidative monofluoromethylation 
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An in situ generated iminium ion, stemming from the desulfurization of 
an indole derivative, has been used as an electrophile in reactions with FBSM. 
In this work by Shibata and coworkers, the monofluoromethyl indole 
derivatives were prepared in excellent yields and generally displayed high 
enantiomeric excess (Scheme 8).15 As in previous work, radical 
desulfurization proceeds with retention of stereochemistry. 

 

 
 

Scheme 8. Enantioselective monofluoromethylation of indole derivatives 
 

Finally, in a collaborative effort, the labs of Yang and Rios jointly 
developed a cascade reaction for the synthesis of fluoroindane and 
fluorochromanol derivatives.16 The cascade begins with a conjugate addition 
of FBSM to the iminium ion born as a consequence of condensation between 
the aldehyde and the chiral amine. Upon the occurrence of a second Michael 
reaction, the fluoroindane is formed. Using (2-hydroxy)cinnamic acids 
results in the formation of fluorochromanols (Scheme 9). 
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Substitution Reactions with FBSM 
 
SN2’: SN2’ chemistry offers a viable route to obtain functionalized allylic 

compounds. The application of this concept to FBSM pronucleophile has 
facilitated the synthesis of various b,g-unsaturated-a-fluoromethyl 
compounds. The first transformation of this type was disclosed 
collaboratively by Shibata and Toru in 2006 (Scheme 10).4 The authors 
performed an enantioselective allylic monofluoromethylation of allyl 
acetates using FBSM in combination with a palladium catalyst and chiral 
ligand, producing the desired allyl monofluoromethanes in moderate to good 
yields with high enantioselectivities. 

 

 
Scheme 10. Enantioselective Pd-catalyzed allylic monofluoromethylation 
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properties.18 
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As part of an investigation into the potency of phosphine-imidazoline 
ligands when applied to allylic substitution reactions, FBSM was reacted with 
an allylic acetate to generate the allyl-monofluoromethyl compound in good 
yield with excellent ee.19 Mei et al. discovered that the optimal catalyst for this 
system was h3-allyl palladium(II)chloride dimer, and a series of axially-chiral 
BINAP-type ligands were found suitable for the transformation (Scheme 12). 

 

 
 

Scheme 12. Chiral ligand-assisted Pd-catalyzed a-fluoromethylation 
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halides afforded monofluoroolefins instead, facilitating the synthesis of b-
fluorostyrenes (Scheme 14). 

 

 
 

Scheme 14. Nucleophilic monofluoromethylation of 
primary alkyl halides 
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Epoxide Ring-opening 
 
Epoxide ring-opening reactions have seen use primarily in the synthesis 

of b-substituted alcohols. One approach to b-monofluoromethyl alcohols was 
disclosed by Hu and coworkers in 2006.23 On deprotonation with n-BuLi, 
FBSM was reacted with various epoxides, of which the corresponding 
monofluoromethane derivatives were obtained in good to excellent yields 
(Scheme 16). 

 

 
 

Scheme 16. Epoxide ring-opening with FBSM 
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Scheme 18. Synthesis of b-monofluoromethyl amines 
through Mannich-type intermediate 

 
Additions to Alkenes and Alkynes 

 
Fluoroiodobis(phenylsulfonyl)methane (FBSM-I) has been prepared by a 
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Scheme 19. Radical monofluoromethylation of olefins using FBSM-I 
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In 2009, Shibata and coworkers devised a synthesis of monofluoromethyl 
allenes from 2-halo-1,3-dienes and FBSM, catalyzed by a palladium species.28 
The desired allenes were synthesized in excellent yields (Scheme 21). 

 

 
 

Scheme 21. Monofluoromethylation of conjugated dienes 
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Scheme 23. Enantioselective monofluoromethylation of MBH-carbonates 
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Scheme 24. Trifluoromethide-promoted monofluoromethylation 
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Scheme 25. Li+-promoted FBSM addition to aldehydes 
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monofluoromethyl carbinols were transformed into monofluoroolefins 
through step-wise treatment with benzyl chloride and then LiHMDS. The 
olefins were predominantly obtained in the Z configuration, and in good 
yields (Scheme 26).34 

 

 
 

Scheme 26. Monofluoroolefination using FBSM 
 

A DIAD-mediated a-fluoromethylation of tertiary amines is reported by 
Hu and coworkers, via a dehydrogenative coupling of the amines with FBSM 
(Scheme 27).35 The reaction is postulated to involve an iminium ion 
intermediate, which acts as the electrophile to react with FBSM nucleophile. 
The monofluoromethyl products were obtained in moderate to excellent 
yields. 

 

 
 

Scheme 27. Dehydrogenative monofluoromethylation of amines 
 

Perfluoroalkylsilanes have been extensively used as sources of 
nucleophilic fluoroalkyl species. The deprotonation-silylation of FBSM, as 
conducted by Prakash et al., provides access to a reagent requiring mild 
activation for nucleophilic monofluoromethylation of carbonyl compounds 
(Scheme 28).36 

 

 
 

Scheme 28. Silylation of FBSM 
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