Percent Purity (%) = $100 \times \frac{m_{\text{std}} \times MW_{\text{cpd}} \times \text{molar ratio}}{m_{\text{cpd}} \times MW_{\text{std}}}$

$m_{\text{std}}$ = mass of internal standard in mg
$MW_{\text{cpd}}$ = molecular weight of target compound
molar ratio = $\frac{I_{\text{cpd}}/n_{H_{\text{cpd}}}}{I_{\text{std}}/n_{H_{\text{std}}}}$
$I_{\text{cpd}}$ = proton integral area of a known peak on the compound being analyzed
$n_{H_{\text{cpd}}}$ = number of hydrogens associated with the compound NMR peak
$I_{\text{std}}$ = proton integral area of a known peak on the standard
$n_{H_{\text{std}}}$ = number of hydrogens associated with the standard NMR peak
$m_{\text{cpd}}$ = mass of target compound in mg
$MW_{\text{std}}$ = molecular weight of internal standard compound

Percent Purity (%) = 95.8%

= $100 \times \frac{23.44 \times 434.32 \times (1.06/1.49/3)}{44.70 \times 168.19}$