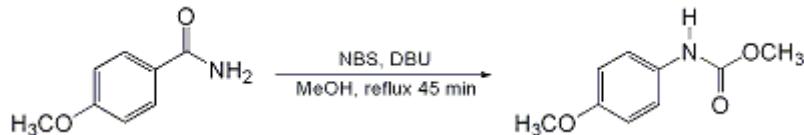


A Publication
of Reliable Methods
for the Preparation
of Organic Compounds

Working with Hazardous Chemicals

The procedures in *Organic Syntheses* are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.


The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.*, its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

September 2014: The paragraphs above replace the section "Handling and Disposal of Hazardous Chemicals" in the originally published version of this article. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.

Organic Syntheses, Coll. Vol. 10, p.549 (2004); Vol. 78, p.234 (2002).

METHYL CARBAMATE FORMATION VIA MODIFIED HOFMANN REARRANGEMENT REACTIONS: METHYL N-(p-METHOXYPHENYL)CARBAMATE

[Carbamic acid, (4-methoxyphenyl)-, methyl ester]

Submitted by Jeffrey W. Keillor¹ and Xicai Huang.
Checked by Scott Ceglia and Edward J. J. Grabowski.

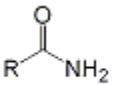
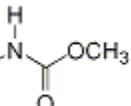
1. Procedure

To a 1-L, round-bottomed flask equipped with a stirring bar are added **p**-methoxybenzamide (10 g, 66 mmol), **N**-bromosuccinimide (NBS) (11.9 g, 66 mmol), **1,8-diazabicyclo[5.4.0]undec-7-ene** (DBU) (22 mL, 150 mmol) and **methanol** (300 mL) (Note 1). The solution is heated at reflux for 15 min (Note 2), at which point an additional aliquot of NBS (11.9 g, 66 mmol) is added slowly. The reaction is allowed to continue for another 30 min (Note 3). **Methanol** is removed by rotary evaporation and the residue is dissolved in 500 mL of **ethyl acetate** (EtOAc). The EtOAc solution is washed with 6 N **hydrochloric acid** (HCl) (2 × 100 mL), 1 N **sodium hydroxide** (NaOH) (2 × 100 mL) and saturated **sodium chloride** (NaCl), and then dried over **magnesium sulfate** (MgSO₄). The solvent is removed by rotary evaporation and the product, **methyl N-(p-methoxyphenyl)carbamate**, is purified by flash column chromatography [50 g of silica gel, EtOAc / **hexane** (1:1)] to give a pale yellow solid (11.1 g, 93%), which is further purified by recrystallization from 500 mL of **hexane** (Note 4). Another 1.4 g of product (total 8.8 g, 73%) is obtained from the mother liquor by recrystallization from 100 mL of **hexane**.

2. Notes

1. **p**-**Methoxybenzamide**, NBS and DBU were purchased from the Aldrich Chemical Company, Inc.
2. The reaction mixture is heated using an oil bath.
3. Reaction progress can be followed by thin layer chromatography using EM Science silica gel 60 F254 aluminum-backed plates, eluted with EtOAc/**hexane** (1:1) and visualized using a 254 nm UV lamp.
4. **Methyl N-(p-methoxyphenyl)carbamate** prepared by this procedure was characterized as follows: mp (uncorr.) 88.5–89.5°C (lit.² mp 88–89°C); ¹H NMR (500 MHz, CDCl₃) δ: 3.77 (s, 3 H), 3.78 (s, 3 H), 6.50 (bs, 1 H), 6.90 (m, 2 H), 7.26 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ: 52.1, 55.3, 114.1, 120.6, 130.9, 154.5, 155.8; FTIR spectrum (CHCl₃) cm⁻¹: 3437, 3080, 2963, 1734, 1600, 1511, 1464, 1298, 1226, 1181, 1076, 1035; Calcd for C₉H₁₁NO₃: C, 59.7; H, 6.1; N, 7.7. Found: C, 59.6; H, 6.3; N, 7.7.

Waste Disposal Information



All toxic materials were disposed of in accordance with "Prudent Practices in the Laboratory"; National Academy Press; Washington, DC, 1995.

3. Discussion

This method offers a rapid, efficient and particularly mild preparation of methyl carbamates, and has been used with success with a variety of primary amides³ (see Table). These carbamates are easily hydrolyzed to free amines, making this method particularly useful for making ¹⁵N-labeled anilines containing electron-donating substituents, such as **p**-anisidine, **2,4-dimethoxyaniline** and **4-dimethylaminoaniline**. Although other methods are available for the preparation of methyl carbamates, including the use of NaOH/Br,⁴ iodine(III) species,⁵ **lead tetraacetate**,⁶ and NBS-Hg(OAc)₂,⁷ none of

these methods are mild enough to permit the clean conversion of **p-methoxybenzamide**, since they cause further oxidation of the product. Currently, the best alternative method is the use of NBS/NaOMe reported earlier by this laboratory.⁸

TABLE
CONVERSION OF AMIDES TO METHYL CARBAMATES WITH NBS/DBU

R ^a	Yield, ^b (%)	Obs. mp, ^c (°C)	Lit. mp, (°C)
3,4-(MeO) ₂ C ₆ H ₃ -	89	80-81	81 ^d
p-MeC ₆ H ₄ -	84	98-99	99-101 ^e
C ₆ H ₅ -	95	45-46	47-48.5 ^e
p-ClC ₆ H ₄ -	94	113-115	115-117 ^e
p-NO ₂ C ₆ H ₄ -	70 ^f	177-178	177.5-178 ^g
C ₆ H ₅ CH ₂ -	95	64-65	65 ^h
CH ₃ (CH ₂) ₈ -	90	< r.t.	-
CH ₃ (CH ₂) ₁₄ -	73	61-62	61-62 ⁱ

^aPrepared from the corresponding carboxylic acid or acid chloride.

^bRefers to pure isolated and characterized product.

^cDetermined in capillary tubes and uncorrected.

^dBrunner, O.; Wöhrl, R. *Monatsh.* **1933**, *63*, 374-384.

^eFujisaki, S.; Tomiyasu, K.; Nishida, A.; Kajigaeshi, S. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 1401-1403.

^fOvernight reflux.

^gHegarty, A. F.; Frost, L. N. *J. Chem. Soc., Perkin Trans. 2* **1973**, 1719-1728.

^hChabrier de la Saulnière, P. *Ann. Chim.* **1942**, *17*, 353-370.

ⁱReference 3.

References and Notes

1. Département de chimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7.
2. Esch, P. M.; Hiemstra, H.; Speckamp, W. N. *Tetrahedron* **1992**, *48*, 3445-3462.
3. Huang, X.; Seid, M.; Keillor, J. W. *J. Org. Chem.* **1997**, *62*, 7495-7496.
4. Wallis, E. S.; Lane, J. F. *Org. React.* **1946**, *3*, 267-306.
5. Moriarty, R. M.; Chany II, C. J.; Vaid, R. K.; Prakash, O.; Tuladhar, S. M. *J. Org. Chem.* **1993**, *58*, 2478-2482.
6. Baumgarten, H. E.; Smith, H. L.; Staklis, A. *J. Org. Chem.* **1975**, *40*, 3554-3561.
7. Jew, S.-S.; Park, H. G.; Park, H.-J.; Park, M.-S.; Cho, Y.-S. *Tetrahedron Lett.* **1990**, *31*, 1559-1562.
8. Huang, X.; Keillor, J. W. *Tetrahedron Lett.* **1997**, *38*, 313-316.

Appendix

Chemical Abstracts Nomenclature (Collective Index Number);
(Registry Number)

Methyl N-(p-methoxyphenyl)carbamate:
Carbamic acid, (4-methoxyphenyl)-, methyl ester (9); (14803-72-6)

p-Methoxybenzamide:
Benzamide, 4-methoxy- (9); (3424-93-9)

N-Bromosuccinimide:
Succinimide, N-bromo- (8);
2,5-Pyrrolidinedione, 1-bromo- (9); (128-08-5)

1,8-Diazabicyclo[5.4.0]undec-7-ene: DBU:
Pyrimido[1,2-a]azepine, 2,3,4,6,7,8,9,10-octahydro- (8,9); (6674-22-2)

Copyright © 1921-2005, Organic Syntheses, Inc. All Rights Reserved