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1. Procedure

A. 9-Tetradecylcarbazole (1). A single-necked 500-mL, round-
bottomed, side-armed flask (Note 1) equipped with a glass stopper and a
magnetic stirring bar is connected to a nitrogen-vacuum manifold. After
evacuating and backfilling with nitrogen three times, the flask (with stopper
removed), in which a positive flow of nitrogen is maintained throughout the
entire procedure, is sequentially charged with carbazole (12.5 g, 0.072 mol)
(Note 2), 1-bromotetradecane (24.3 mL, 0.079 mol) (Note 3), THF (60 mL)
and DMF (20 mL) (Note 4). To the stirred solution, NaH (60% in oil, 4.32 g,
0.11 mol) (Note 3) is added to the solution in small portions within 20 min,
avoiding vigorous bubbling and heating. The flask is capped with a glass
stopper and the resulting suspension is stirred for 2 h at room temperature
under nitrogen. Methanol (30 mL) is slowly added to the reaction mixture
within 5 min to quench the remaining NaH. The solution is transferred to a
1-L, round-bottomed flask and then is concentrated by rotary evaporation
(15-20 mmHg, water bath temperature 50-55 °C) to afford a solid residue,
which is extracted with CH,Cl, (3 x 100 mL). The combined organic layers
are sequentially washed with 2 N ag HCI (2 x 100 mL), H,O (2 x 100 mL),
then are dried (Na,SO,4) and concentrated by rotary evaporation. The crude
product is purified by column chromatography [silica gel, 80 x 250 mm,
hexanes] to afford carbazole 1 as a white solid (25.8 g, 98%) (Note 5).

B. 3,6-Diiodo-9-tetradecylcarbazole (2). A 500-mL, one-necked,
round-bottomed flask equipped with a magnetic stirring bar is sequentially
charged with carbazole 1 (14.5 g, 0.040 mol), N-iodosuccinimide (19.1 g,
0.081 mol) (Note 6), CHCI; (280 mL) and acetic acid (100 mL). The flask is
capped with a nitrogen inlet adapter and wrapped in aluminum foil. The
reaction mixture is stirred under nitrogen for 16 h at room temperature.
Chloroform and acetic acid are removed by rotary evaporation. A pink
precipitate forms upon pouring water (450 mL) into the residue and then
transferring the slurry into a 1-L Erlenmeyer flask containing more water
(200 mL). The solids are collected by filtration, air dried and dissolved in
CHCI; (300 mL). The organic solution is sequentially washed with saturated
Na,S,0; (3 x 70 mL), brine (2 x 100 mL), dried (Na,SO,), filtered and
concentrated by rotary evaporation (15-20 mmHg, water bath temperature
30-35 °C). lodinated carbazole 2 is obtained as a white solid (23.8 g, 97%)
and used without further purification (Note 7).
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C. 3,6-Bis[(trimethylsilyl)ethynyl]-9-tetradecylcarbazole (3). A 500-
mL single-necked round-bottomed, side-arm flask equipped with a glass
stopper and a magnetic stirring bar is connected to a nitrogen-vacuum
manifold. After evacuating and backfilling with nitrogen three times, the
flask, in which a positive flow of nitrogen is maintained throughout the
procedure, is sequentially charged with iodinated carbazole 2 (23.7 g, 0.038
mol), Cul (0.147 g, 0.77 mmol) (Note 3), Pd(PPh;),Cl, (1.35 g, 1.9 mmol)
(Note 3), THF (90 mL), and piperidine (55 mL) (Note 3). The flask is cooled
in an ambient temperature water bath before 1-trimethylsilylacetylene (45.7
mL, 0.38 mol) (Note 8) is added in two portions over 5 min (Note 9). The
reaction mixture is then stirred for 23 h at room temperature. The solution
changes from green to yellow with the formation of a white precipitate, and
then the suspension changes to green and then black. The reaction mixture is
then filtered through a coarse fritted funnel into a 1-L, one-necked, round-
bottomed flask and is concentrated by rotary evaporation (15-20 mmHg,
water bath temperature 40—45 °C). The crude product is purified by column
chromatography [silica gel, 80 x 250 mm, hexanes 1 L, then hexanes/EtOAc
50/1 (2 L), then hexanes/EtOAc, 20/1 (1 L)] to afford diyne-substituted
carbazole 3 as a yellow oil (19.9 g, 93%) (Note 10).

D. 3,6-Diethynyl-9-tetradecylcarbazole (4). A 1-L, one-necked,
round-bottomed flask equipped with a magnetic stirring bar is sequentially
charged with diyne substituted carbazole 3 (19.5 g, 0.035 mol), THF (100
mL) and ethanol (400 mL). As the resulting solution is stirred, a solution of
NaOH (4.21 g, 0.11 mol) in H,O (30 mL) is added slowly over 5 min. The
solution is stirred under nitrogen at room temperature for an additional 2 h
during which time the solution changes from orange to red. The solvent is
removed by rotary evaporation (water bath temperature 45-50 °C) to afford
a residue, which is partitioned between CH,Cl, (450 mL) and H,O (100 mL)
in a 1-L separatory funnel. The separated organic layer is washed with H,O
(2 x 100 mL) and brine (2 x 100 mL), and then is dried (Na,SO,), filtered
and concentrated by rotary evaporation (20-25 mmHg, water bath
temperature 30-35 °C). Diyne-substituted carbazole 4 is obtained as a
yellow-red oil that becomes a tan solid upon standing (14.0 g, 97%) and is
used without further purification (Notes 11, 12).

E. 3,6-Bis(benzoylbiphenyl)ethynyl-9-tetradecylcarbazole (5). A 500-
mL, single-necked round-bottomed, side-arm flask equipped with a Teflon
thermometer adapter and a magnetic stirring bar is connected to a nitrogen-
vacuum manifold. The flask is flame-dried under vacuum, then filled with
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nitrogen. After evacuating and backfilling with nitrogen three times, the
flask, in which a positive flow of nitrogen is maintained throughout the
entire procedure, is sequentially charged with Cul (0.058 g, 0.31 mmol)
(Note 3), Pdy(dba); (1.68 g, 1.8 mmol) (Note 13), PPh; (3.21 g, 12 mmol)
(Note 13) and 4-benzoyl-4’-bromobiphenyl (21.7 g, 0.064 mol) (Note 14).
The flask containing the solid mixture is evacuated and backfilled with
nitrogen three times. Under a nitrogen purge, triethylamine (70 mL) (Note 3,
Note 4) and a solution of diyne-substituted carbazole 4 (12.6 g, 0.031 mol)
in DMF (150 mL) (Note 4) are sequentially added. Oxygen is removed from
the mixture by three freeze-pump-thaw cycles. The reaction mixture is then
stirred for 16 h at 70 °C (internal temperature). The solution changes from
yellow to a dark purple. When the reaction mixture cools to room
temperature, yellow precipitates are observed. The mixture is transferred to
a 1-L, single-necked, round-bottomed flask with the aid of dichloromethane
washes (2 x 250 mL). Dichloromethane and Et;N are removed by rotary
evaporation (15-20 mmHg, water bath temperature 4045 °C) and DMF is
removed under high vacuum by using a short-path distillation apparatus
(0.50-1.0 mmHg, air bath temperature 45-55 °C) (Note 15).
Dichloromethane (400 mL) is added and the organic layer is washed with
saturated aq. NH4Cl solution (2 x 200 mL), brine (2 x 200 mL) and then was
dried (Na,SO4) and filtered. Dichloromethane is removed by rotary
evaporation and the residual solid is treated with methanol (200 mL),
resulting in the formation of a yellow solid. The solid bisarylethynyl-
substituted carbazole 5 is collected by filtration, then is washed with
methanol (3 x 50 mL), dried in vacuo (26.9 g, 95%) and used without further
purification (Notes 16, 17).

F. Carbazole-based tetrakismacrocycle (6). A 400-mL Schlenk tube
equipped with a magnetic stirring bar and a glass stopper is introduced to a
glove box. The flask is sequentially charged with 4-nitrophenol (0.680 g,
4.89 mmol) (Note 3), trisamidomolybdenum(VI) propylidyne (1.09 g, 1.63
mmol) (Note 18) and CCly (150 mL) (Note 4). The resulting solution is
stirred for 4 min and the solution changes from light yellow to orange (Note
19). A solution of monomer 5 (15.1 g, 16.3 mmol) in CCl, (200 mL) (Notes
20, 21) is added to the stirred catalyst solution. The flask is sealed with
grease and electrical tape and is removed from the glove box. The resulting
mixture is stirred at 50 °C (Note 22) for 24 h during which time a light-
yellow precipitate forms and the color of the reaction mixture changes from
yellow to brown. The mixture is transferred to a 1-L Erlenmeyer flask, along
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with CH,Cl, (200 mL). The solids are removed by suction filtration through
a medium-porosity fritted-glass funnel and are washed with CH,Cl, (2 x 50
mL). The filtrate is concentrated by rotary evaporation (2025 mmHg, water
bath temperature 4045 °C). Methanol (200 mL) is added to the residue and
the resulting suspension is filtered, washed with methanol (3 x 75 mL) and
dried in vacuo. The crude product is further purified by silica gel column
chromatography (Note 3) [silica gel, 44 x 572 mm, CHCI;/CH,Cl,, 3/1 to
1/1] to afford macrocyclic product 6 as a pale-yellow solid (3.80 g, 61%)
(Notes 23, 24).

2. Notes

1. All glassware was oven-dried at 140 °C overnight.

2. Carbazole (96%) was purchased from Acros and used as
received.

3. 1-Bromotetradecane (97%), sodium hydride (60% dispersion in
mineral oil), Cul (99.999%), Pd(PPh;),Cl, (98%), piperidine (redistilled,
99.5+%), triethylamine (99.5%), p-nitrophenol (> 99%) and grade 62 silica
gel with pore size of 150 A were purchased from the Aldrich Chemical
Company, Inc. and used as received unless further purification is indicated.

4. THF and DMF were dried by standing over 4 A molecular sieves
over night before use. Carbon tetrachloride was distilled over P,Os and
stored over 3 A molecular sieves.

5. A small portion of compound 1 was further purified by
recrystallization from ethanol to afford analytically pure material. The
analytical data from compound 1 were as follows: mp 4244 °C; TLC: R, =
0.22 (hexanes); 'H NMR (CDCl;, 500 MHz) §: 0.87 (t, J = 7.4 Hz, 3 H),
1.23-1.40 (m, 22 H), 1.87 (tt, J= 7.3 and 7.3 Hz, 2 H), 4.30 (t, /= 7.3 Hz, 2
H), 7.22 (dt,J = 7.8 and 0.9 Hz, 2 H), 7.40-7.48 (m, 4 H), 8.10 (d, J = 7.8
Hz, 2 H); "C NMR (CDCl;, 125 MHz) §: 14.1, 22.7, 27.3, 28.9, 29.3, 29.4,
29.47, 29.54, 29.57, 29.62, 29.64, 31.9, 43.0, 108.6, 118.6, 120.3, 122.8,
125.5, 140.4. IR (KBr): 3048, 2947, 2919, 2869, 2848, 2341, 2360, 1628,
1600, 1485, 1465, 1453, 1371, 1351, 1328, 1235, 1153, 1122 cm™'; LRMS
(EI): m/z 363.3, 180.1. Anal. Calcd for C,sH3,NO: C, 85.89; H, 10.26; N,
3.85. Found: C, 86.12; H, 10.66; N, 4.03. The spectroscopic data were in
agreement with those previously reported.’

6. N-lodosuccinimide (95%) was purchased from the Aldrich
Chemical Company, Inc. and used as received.
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7. The analytical data from compound 2 were as follows: mp 79—-80
°C; '"H NMR (CDCls, 500 MHz) : 0.88 (t, J = 7.1 Hz, 3 H), 1.22-1.30 (m,
22 H), 1.81 (tt, J="7.1 and 7.1 Hz, 2 H), 4.21 (t, J=7.4 Hz, 2 H), 7.16 (d, J
= 8.6 Hz, 2 H), 7.70 (dd, J= 8.6 and 1.7 Hz, 2 H), 8.32 (d, /= 1.5 Hz, 2 H);
PC NMR (CDCls, 125 MHz) &: 14.1, 22.7, 27.2, 28.8, 29.31, 29.35, 29.35,
29.42, 29.51, 29.56, 29.61, 29.63, 29.65, 31.9, 43.2, 81.6, 110.9, 124.0,
129.3, 134.5, 139.5; IR (KBr): 3062, 2921, 2847 1585, 1466, 1428, 1374,
1348, 1312, 1290, 1236, 1216, 1152, 1047, 1014 cm™; LRMS (EI): m/z
615.1, 431.9, 208.1. These spectroscopic data were in agreement with those
previously reported.’

8. 1-Trimethylsilylacetylene (98+%) was purchased from GFS
Chemicals and used as received.

9. Upon addition of I-trimethylsilylacetylene, a significant
exotherm (15 °C) was observed, and stirring became difficult as the
piperidine hydroiodide was formed.

10. The analytical data from compound 3 were as follows: TLC R, =
0.32 (n-hexane/EtOAc, 20/1); '"H NMR (CDCl;, 500 MHz) 8: 0.28 (s, 18 H),
0.87 (t,J=7.1 Hz, 3 H), 1.22-1.31 (m, 22 H), 1.83 (p, /= 7.1 Hz, 2 H), 4.25
(t,J=7.2Hz, 2 H),7.29 (d,J=28.1 Hz, 2 H), 7.56 (dd, J= 8.5 and 1.6 Hz, 2
H), 8.19 (d, J = 1.0 Hz, 2 H); °C NMR (CDCls, 125 MHz) &: 0.15, 14.1,
22.7,27.2,28.9,29.32,29.34, 29.45, 29.51, 29.57, 29.61, 29.63, 29.65, 31.9,
43.3, 92.0, 106.3, 108.8, 113.7, 122.3, 124.7, 130.0, 140.5; IR (film): 2926,
2854, 2153, 1869, 1629, 1598, 1483, 1406, 1382, 1350, 1318, 1287, 1248,
1202, 1149, 1133, 1059 cm™; MS (EI): m/z 555.4, 372.1, 73.1. These
spectroscopic data were in agreement with those previously reported.’

11. A small portion of compound 4 was further purified by column
chromatography (n-hexanes/EtOAc, 100/1 to 20/1) to afford analytically
pure material. The analytical data from compound 4 were as follows: TLC
R;=0.29 (n-hexanes/EtOAc, 20/1); 'H NMR (CDCls, 500 MHz) §: 0.88 (t, J
=7.3 Hz, 3 H), 1.22-1.35 (m, 22 H), 1.84 (tt, /= 7.1 and 7.1 Hz, 2 H), 3.00
(s,2 H),4.25(t,J=7.3 Hz, 2 H), 7.32 (d, /= 8.6 Hz, 2 H), 7.60 (dd, J = 8.3,
1.5 Hz, 2 H), 8.21 (d, J= 1.1 Hz, 2 H); "C NMR (CDCls, 125 MHz) §: 14.1,
22.7,27.2,28.9, 29.30, 29.33, 29.43, 29.50, 29.56, 29.60, 29.62, 29.64, 31.9,
43.3, 75.4, 84.7, 108.9, 112.7, 122.2, 124.7, 130.1, 140.6; IR (film): 3279
(s), 2924 (s), 2849 (s), 2103 (s), 1630 (m), 1598 (s), 1483 (s), 1381 (m),
1349 (s), 1321 (w), 1290 (s), 1234 (m), 1153 (s), 1134 (m), 882 (s), 812 (s),
728 (w), 681 (m), 653 (s), 614 (s) cm™; LRMS (EI): m/z 411.3, 228.1, 75.0.
Anal. Calcd for C50H;3;N: C, 87.54; H, 9.06; N, 3.40. Found: C, 87.38; H,
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8.78; N, 3.63. These spectroscopic data were in agreement with those
previously reported.’

12. The appearance of more than one 'H NMR singlet around & 3.1
ppm (terminal acetylene) indicated the presence of mono-desilylation side
product. In this case, 4 was further purified by column chromatography [n-
hexanes/EtOAc, 100/1 to 20/1, TLC Ry= 0.29 (n-hexanes/EtOAc, 20/1].

13. Pdy(dba); and PPh; (99%) were purchased from Strem
Chemicals, Inc. and used as received.

14. 4-Benzoyl-4’-bromobiphenyl (99%) was purchased from
Lancaster and used as received.

15. The submitters reported the use of a Kugelrohr short-path
distillation apparatus (Cat. No. Z401137-1SET), which was purchased from
Aldrich Chemical Company, Inc.

16. A small portion (500 mg) of compound 5 was further purified by
recrystallization from hot isopropyl acetate (ca. 20 mL) to provide
analytically pure material. The analytical data from compound 5 were as
follows: mp 162-167 °C; TLC R, = 0.26 (CH,Cl,/n-hexanes, 1/1); '"H NMR
(CDCls, 500 MHz) o: 0.88 (t, J = 7.1 Hz, 3 H, CH;), 1.19-1.41 (m, 22 H,
CH,), 1.89 (tt, J=7.1,7.1 Hz,2 H), 4.31 (t,J=7.3 Hz,2 H), 7.40 (d, J= 8.4
Hz, 2 H), 7.52 (m, 4 H), 7.61 (tt, J= 7.5, 1.4 Hz, 2 H), 7.66-7.71 (m, 10H),
7.74 (d, J=8.6 Hz, 4 H), 7.85 (m, 4 H), 7.92 (d, /=8.4 Hz, 4 H), 8.32 (d, J
= 1.4 Hz, 2 H); °C NMR (CDCl;, 125 MHz) §: 14.1, 22.7, 27.2, 28.9, 29.3,
29.46, 29.51, 29.57, 29.61, 29.62, 29.64, 31.9, 43.4, 87.6, 92.0, 109.1, 113.7,
122.5, 123.8, 124.2, 126.8, 127.2, 128.3, 129.8, 130.0, 130.8, 132.1, 132.4,
136.4, 137.7, 139.2, 140.6, 144.4, 196.3; IR (KBr): 2924, 2851, 2201, 1648,
1600, 1522, 1481, 1384, 1317, 1277, 1150 cm’'. LRMS (MALDI): m/z
923.94, 825.5, 809.5, 755.9, 740.8, 567.4, 551.4, 545.4. Anal. Calcd for
CesHg1NO,: C, 88.38; H, 6.65; N, 1.52. Found: C, 88.06; H, 6.41; N, 1.70.
These spectroscopic data were in agreement with those previously reported.”

17. The submitters found that the appearance of more than one 'H
NMR triplet around & 4.3 ppm (a-methylene protons on the tetradecyl side
chain) indicated the presence of unreacted starting material and/or mono-
alkynylated product. In this case, 5 could be further purified by column
chromatography [n-hexanes/CH,Cl,, 1/1 v/v, TLC R, = 0.26 (CH,Cly/n-
hexane, 1/1)].

18. Gram-scale preparation of  trisamidomolybdenum(VI)
propylidyne is reported in the preceding Organic Syntheses report.
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19. A red precipitate was observed during mixing, and was
presumably due to the low solubility of the species generated in CCly. In the
case of chloroform, ethyl acetate or THF as solvent, no precipitate was
observed.

20. Only a portion of monomer 5 dissolved in CCly at the start of the
reaction. However, the poor solubility of 5§ did not affect the macrocycle
synthesis. As the metathesis reaction proceeded, monomer 5 dissolved and
was transformed into soluble macrocycles.

21. In addition to CCl, 1,2,4-trichlorobenzene and toluene are
alternative solvents for the macrocycle synthesis. The amount of aromatic
impurities observed in the reaction (based on '"H NMR analysis) conducted
in CCl, was less than that observed in toluene.

22. In a previous report on the small-scale synthesis of macrocycle 6
via precipitation-driven alkyne metathesis,” the reaction was conducted at 30
°C. However, for gram-scale preparation, the low solubility of oligomeric
intermediates dramatically increased the solution viscosity and made stirring
difficult. Raising the reaction temperature from 30 °C to 50 °C greatly
improved the intermediate solubility and allowed efficient stirring.

23. The crude product 6 (after methanol wash, before column
separation) was obtained in 98% vyield (6.13 g) and contained a small
amount of aromatic impurities (mainly 4-benzoyl-4’-bromobiphenyl).
Macrocycles of high purity were obtained after column chromatography.
The analytical data from compound 6 were as follows: mp 222-224 °C;
TLC; R,= 0.89 (CHCI3/CH,Cl,, 3/1); "H NMR (CDCl;, 500 MHz) 8: 0.88 (t,
J=7.1Hz, 12 H), 1.20-1.45 (m, 88 H), 1.90 (tt, /= 7.1, 7.1, 8 H), 4.31 (t,J
= 7.1 Hz, 8 H), 7.39 (d, J = 8.5 Hz, 8§ H), 7.71 (dd, J = 8.3, 1.3 Hz, 8§ H),
8.42 (d, J= 0.7 Hz, 8 H); °C NMR (CDCl;, 125 MHz) &: 14.1, 22.7, 27.3,
29.0, 29.35, 29.50, 29.55, 29.60, 29.64, 29.67, 31.9, 43.3, 89.0, 108.9, 114.4,
122.6, 123.9, 129.3, 140.1; IR (KBr): 2922, 2848, 1628, 1599, 1570, 1490,
1382, 1352, 1307, 1283, 1214, 1148, 1131 cm™'; MS (MALDI): m/z 1542.7,
1370.1. Anal. Calcd for Cy;oH 40N4: C, 87.22; H, 9.15; N, 3.63; Found: C,
86.84; H, 9.19; N, 3.26. These spectroscopic data were in agreement with
those previously reported.”

24. The checkers found that accurate analytical data could be
obtained from 6 only after thorough drying at 0.3 mm Hg in an Abderhalden
apparatus heated with refluxing xylenes.
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Safety and Waste Disposal Information

All hazardous materials should be handled and disposed of in
accordance with “Prudent Practices in the Laboratory”; National Academy
Press; Washington, DC, 1995.

3. Discussion

Shape-persistent arylene ethynylene macrocycles have attracted
attention in the fields of supramolecular chemistry and materials science
over the past decade due to their novel properties and potential applications.’
However, the study and application of shape-persistent macrocycles are
impeded by inefficient macrocycle syntheses. The usual preparation involves
a large number of synthetic steps, requires dilute conditions (< 1 mM), and
affords low overall yields.* Considerable efforts have been devoted to the
development of methodologies allowing selectively functionalized structures
to be obtained in high yields.

Conventional synthetic routes for arylene ethynylene macrocycles are
dominated by Sonogashira coupling’ between aryl iodides and terminal
acetylenes and Glaser-type couplings® between terminal acetylenes. These
cross-coupling approaches have advantages such as high tolerance of
functional groups, with generally high yields in the individual steps.
However, to obtain high yields of macrocycles, precursor oligomers must be
pre-synthesized in a stepwise fashion and subsequently subjected to cross-
coupling reactions under pseudo-high dilution condition (< 1 mM) to form
macrocycles via intramolecular cyclization. Such tedious and time-
consuming synthesis of the precursors impedes the efficient large-scale
preparation of macrocycles via this route. Random cyclization of three or
more monomer units has also been applied to preparing target macrocycles,
but usually only low yields (1-18% on cyclization step) were obtained.’

Inspired by the successful applications of thermodynamically
controlled reversible reactions in preparing unique molecular architectures®
such as macrocyclic compounds, molecular capsules and interlocked
structures, we envisioned that a convenient synthesis of arylene ethynylene
macrocycles could be accomplished by using dynamic covalent chemistry.’
In the past two decades, there has been rapid progress in alkyne metathesis
catalyzed by either defined carbyne complexes'® or catalysts generated in
situ.'" The ready availability of highly active Mo(VI) alkylidyne catalysts
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synthesized by a reductive recycle strategy'” and successful examples of
using dynamic covalent chemistry in organic syntheses prompted us to
develop a synthetic approach to macrocycle preparation directly from a
monomer.

We reported a successful approach involving precipitation-driven
alkyne metathesis for convenient, multi-gram synthesis of arylene
ethynylene macrocycles near room temperature.” Driven by the precipitation
of a diarylacetylene byproduct, the desired macrocycles were obtained in
one step from monomers in high yields. Macrocycle formation is a
thermodynamically favored process under equilibrium control."

We have utilized precipitation-driven alkyne metathesis to prepare
other carbazole-based tetrameric macrocycles, such as 10¢. The four side
chains are easily removed via thermolysis.'* The resulting macrocycles may

exhibit interesting electronic properties such as mixed-valence (MV)

EtC=Mo[NAr(Bu)]3

+
p-nitrophenol

1,2,4-trichloro
benzene
30°C

1] — 1] N
R=-=RY _ 4 » rox
X O 0O 7R
R
9a: R = Methyl 10a: R =Methyl <5%
9b: R = Heptyl 10b: R=Heptyl <5%
9c: R = dodecyl 10c: R =dodecyl 81%

Three dialkyne monomers 9a-¢, which are functionalized with z-butyl
carboxylate, 1,1-dimethyloctyl carboxylate and 1,1-dimethyltridecyl
carboxylate, respectively, were prepared and subjected to standard
metathesis conditions (eq 1). In the case of 9a-b, at the end of the reaction
nearly quantitative conversion of starting monomers into insoluble materials
was observed. Based on elemental analysis, the insoluble materials are
believed to be a mixture of intermediate oligomers and diarylacetylene
byproduct. In great contrast, metathesis of monomer 9¢ proceeded well in
1,2,4-trichlorobenzene at 30 °C, and tetrameric macrocycle 10c¢ was
obtained in 81% isolated yield.'°
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The successful generation of tetrameric macrocycle 6 and 10¢, as well
as those failed cases when using monomer 9a-b, illustrate the importance of
balancing the solubility through the course of macrocycle formation." In the
case of metathesis of 9a-b, the generated oligomeric species, either open-
chain or cyclic versions, presumably precipitate out of solution due to their
insufficient solubility. In great contrast, carbazole oligomers with 1,1-
dimethyltridecyl carboxylate side chains (from metathesis of 9¢) have better
solubility and intermediate species remain in solution, thus allowing for high
yield formation of tetracycles via alkyne metathesis—a dynamic covalent
approach.

This finding has important practical significance in that it
demonstrates that the solubility of longer arylene ethynylene oligomers,
especially those overshooting the target macrocycle length, must be taken
into consideration to accomplish high-yield macrocycle syntheses. All the
intermediate compounds should be sufficiently soluble along the reaction
pathway to allow the thermodynamically stable product to be obtained
through reversible alkyne metathesis.

It is envisioned that the successful preparation of macrocycles using
the precipitation-driven, reversible alkyne-metathesis may open the way to
other two-dimensional or three-dimensional arylene ethynylene structures,
as well as alkyne-bridged oligomers and polymers.
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Appendix
Chemical Abstracts Nomenclature; (Registry Number)

Carbazole: 9H-Carbazole; (86-74-8)

1-Bromotetradecane; (112-71-0)

Sodium hydride; (7646-69-7)

N-Iodosuccinimide: 1-Iodo-2,5-Pyrrolidinedione; (516-12-1)

Copper(]) iodide; (7681-65-4)

Dichlorobis(triphenylphosphine)palladium(II); (13965-03-2)

Piperidine; (110-89-4)

I-Trimethylsilylacetylene: Silane, ethynyltrimethyl-; (1066-54-2)

Tris(dibenzylideneacetone)dipalladium(0) [Pd,(dba);]; (52409-22-0)

Triphenylphosphine; (603-35-0)

4-Benzoyl-4’-bromobiphenyl: ethanone, (4'-bromo[1,1'-biphenyl]-4-
yl)phenyl-; (63242-14-8)

Trisamidomolybdenum(VI) propylidyne: Molybdenum, tris[N-(1,1-
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dimethylethyl)-3,5-dimethylbenzenaminato]propylidyne-, (T-4)-;
(616886-28-3)

p-Nitrophenol: 4-Nitrophenol; (100-02-7)

9-Tetradecylcarbazole: 9-Tetradecyl-9H-carbazole; (20863-25-6)

3,6-Diiodo-9-tetradecylcarbazole: 3,6-Diiodo-9-tetradecyl-9H-carbazole:
(197860-64-3)

3,6-Bis[(trimethylsilyl)ethynyl]-9-tetradecylcarbazole: 9H-Carbazole, 9-
tetradecyl-3,6-bis[(trimethylsilyl)ethynyl]- ; (197860-65-4)

3,6-Diethynyl-9-tetradecylcarbazole; (188740-71-8)

3,6-Bis(benzoylbiphenyl)ethynyl-9-tetradecylcarbazole: Methanone, [(9-
tetradecyl-9H-carbazole-3,6-diyl)bis(2,1-ethynediyl[1,1'-biphenyl]-
4'.4-diyl)]bis[phenyl-; (791090-33-0)

Carbazole-based tetrakismacrocycle; (245648-36-6)
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