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Procedure (Note 1) 
 
A. 3-Bromopropionic acid (2).  A 500-mL Erlenmeyer flask is equipped with a 
magnetic stir bar (4.6 cm x 0.75 cm, rod shaped). The reaction flask is then 
charged with methyl 3-bromopropionate (5.00 g, 29.9 mmol, 1.00 equiv) 
(Note 2) (1) by syringe over 10 seconds (22 G, 7.62 cm needle). The flask 
containing 1 is then charged with pH 7 buffer (225 mL) (Note 3) and acetone 
(25 mL) (Note 4) sequentially via graduated cylinder yielding a clear, 
colorless solution (Figure 1A) (Note 5). The mixture is then stirred at a 
constant rate of 400 rpm at 23 ºC. Once stirred, the flask is then charged with 
Amano Lipase from Pseudomonas fluorescens (0.50 g, 10 wt%) (Note 6) yielding 
a heterogeneous yellow solution (Figure 1B). The flask is then covered with a 
7.6 x 7.6 cm square of aluminum foil and allowed to stir at 23 ºC at a rate of 
400 rpm for 14.5 h.  
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Figure 1. A. Liquid reagents in Erlenmeyer flask; B. Mixture after addition 

of Amano Lipase 
 

After 14.5 h, the reaction is determined to be complete by TLC 
analysis (Note 7) and stirring is ceased. This mixture is then acidified by the 
dropwise addition of aqueous HCl (1.0 M, 20 mL) via syringe over 2 min (18 
G, 30.5 cm needle) (Note 8) and stirred for 1 min at 400 rpm. Upon 
acidification, this mixture is then poured into a 1-L separatory funnel (24/40 
joint) (Figure 2A). The reaction vessel is then rinsed with an additional 100 
mL of deionized water, and the rinse is transferred to the separatory funnel. 
The aqueous layer is then extracted with ethyl acetate (4 X 200 mL) (Note 9), 
and the combined organic layers are collected in a 2-L Erlenmeyer flask (Note 
10). The combined organic layers are then added to the 1 L separatory funnel 
and washed with 75 mL of saturated aqueous sodium chloride (Note 11) 
(Figure 2B) solution and collected in a separate 2-L Erlenmeyer flask. 
 

 
Figure 2. A. First ethyl acetate wash; B. Final brine wash of organic layers  
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The resulting organic layer is dried over anhydrous Na2SO4 (50 g) (Note 
12) and vacuum filtered through a medium-porosity glass, fritted funnel (150 
mL) eluting with ethyl acetate (50 mL) into a 2-L round-bottomed flask 
(Figure 3A). This solution is then concentrated by rotary evaporation under 
reduced pressure (35 ºC, 75 mm Hg). The resultant oil is transferred into a 
tared 20-mL scintillation vial. The 2-L round-bottomed flask is then rinsed 
with ethyl acetate (3 x 2 mL), and the rinses are transferred into the tared vial. 
The tared vial is then concentrated by rotary evaporation under reduced 
pressure (35 ºC, 75 mm Hg) (Note 13). The product is then dried under high 
vacuum (<1.0 mm Hg) for 52 h to provide 3-bromopropionic acid (2) as an 
off-white solid (Figure 3B) (3.21 g, 20.6 mmol, 69% yield, 98.3 wt% purity) 
(Notes 14, 15, 16 and 17). 

 

 
Figure 3. A. Filtration into round bottom flask; B. Pure product 

 
Notes 
 
1. Prior to performing each reaction, a thorough hazard analysis and risk 

assessment should be carried out with regard to each chemical substance 
and experimental operation on the scale planned and in the context of the 
laboratory where the procedures will be carried out. Guidelines for 
carrying out risk assessments and for analyzing the hazards associated 
with chemicals can be found in references such as Chapter 4 of “Prudent 
Practices in the Laboratory" (The National Academies Press, Washington, 
D.C., 2011; the full text can be accessed free of charge at 
https://www.nap.edu/catalog/12654/prudent-practices-in-the-
laboratory-handling-and-management-of-chemical. See also 
“Identifying and Evaluating Hazards in Research Laboratories” 

https://www.nap.edu/catalog/12654/prudent-practices-in-the-laboratory-handling-and-management-of-chemical
https://www.nap.edu/catalog/12654/prudent-practices-in-the-laboratory-handling-and-management-of-chemical
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(American Chemical Society, 2015) which is available via the associated 
website “Hazard Assessment in Research Laboratories” at 
https://www.acs.org/about/governance/committees/chemical-
safety.html. In the case of this procedure, the risk assessment should 
include (but not necessarily be limited to) an evaluation of the potential 
hazards associated with methyl 3-bromopropionate, pH 7 phosphate 
buffer, acetone, Amano Lipase from Pseudomonas fluorescens, 
hydrochloric acid, ethyl acetate, sodium chloride, and sodium sulfate.  

2. Methyl 3-bromopropionate (98%) was purchased from Ambeed and used 
as received. 

3. pH 7.00 phosphate buffer was purchased from Fisher Scientific and used 
as received. 

4. Acetone (ACS Grade) was purchased from Fisher Scientific and used as 
received.  

5. An oil layer was observed on the bottom of the solution after charging 
acetone. A subsequent 9 min 400 rpm agitation yielded a clear and 
homogeneous solution. 

6. Amano Lipase from Pseudomonas fluorescens (specific activity ³20,000 
units/g) was purchased from Sigma Aldrich and used as received.  

7. To monitor reaction progress via TLC, at 14.5 h a 0.5 mL aliquot of the 
reaction mixture is removed from the reaction vessel and placed into a 20 
mL scintillation vial. To this mixture is then added aqueous HCl (1 M, 0.5 
mL) and ethyl acetate (0.5 mL). This mixture is then shaken and the 
organic layer is then spotted onto a silica gel TLC plate against starting 
material 1. Using 19:1 hexanes:ethyl acetate as the eluent, the ester 
starting material 1 has Rf  = 0.33 and the carboxylic acid product has Rf = 
0.00 using KMnO4 stain as visualization (Figure 4). 

 

 
Figure 4. TLC of the crude reaction mixture after 14.5 h (S = methyl 3-
bromopropionate, C = co-spot of S and R, and R = reaction mixture) 

https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.acs.org%2Fabout%2Fgovernance%2Fcommittees%2Fchemical-safety.html&data=05%7C01%7Cmarjorie.williams%40unh.edu%7Ca4d4d0d1a44b4d7a7de908db892b2d6d%7Cd6241893512d46dc8d2bbe47e25f5666%7C0%7C0%7C638254592338294705%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=49XWkZvDxUSiW%2BvJ4pMIod4UIMLC9GMCfB3rkCKw4pk%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.acs.org%2Fabout%2Fgovernance%2Fcommittees%2Fchemical-safety.html&data=05%7C01%7Cmarjorie.williams%40unh.edu%7Ca4d4d0d1a44b4d7a7de908db892b2d6d%7Cd6241893512d46dc8d2bbe47e25f5666%7C0%7C0%7C638254592338294705%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=49XWkZvDxUSiW%2BvJ4pMIod4UIMLC9GMCfB3rkCKw4pk%3D&reserved=0
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8. Aqueous 12 M HCl was purchased from Sigma Aldrich and the 1 M 
solution used in the workup was prepared by adding 100 mL of 12 M 
HCl to 1.1 L of deionized water in a 2-L graduated cylinder.  

9. Ethyl acetate (99.5%) was purchased from Fisher Scientific and was used 
as received. 

10. An emulsion forms between the organic and aqueous layers. The 
emulsion was collected with the organic layer (Figure 5). 
  

 
Figure 5. Emulsion separated from aqueous layer 

 
11. Sodium chloride (>99.0%) was purchased from VWR and was used as 

received. 
12. Anhydrous sodium sulfate (99.5%) was purchased from VWR and was 

used as received. 
13. Upon rotary evaporation, the product appears to be a light brown, clear 

oil (Figure 6). As the vial is dried under high vacuum, the product then 
solidifies to a crystalline, off-white solid. 

 

 
Figure 6. Crude oil after rotary evaporation and drying under reduced 

pressure 
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14. The product can be characterized as follows: 1H NMR (500 MHz, CDCl3) 
δ 11.61 (s, 1H), 3.57 (t, J = 6.8 Hz, 2H), 2.99 (t, J = 6.8 Hz, 2H). 13C NMR 
(126 MHz, CDCl3) δ 177.2, 37.6, 25.1. IR (neat): 2971, 2659, 2568, 1716, 
1689, 1428, 1394, 1240, 1142, 951, 917, 889 cm-1. HRMS-APCI (m/z) [M + 
H]+ calc’d for C3H6O2

79Br+, 152.9551; found 152.9547; mp 61.9-62.7 ºC; Rf 
0.2 (3:1; hexanes:ethyl acetate).  

15. 1H NMR shifts of the carboxylic acid peak of 2 shift based on 
concentration of NMR sample. 

16. The purity of 2 was determined to be 98.3 wt% by qNMR using 1,3,5-
trimethoxybenzene (Sigma Aldrich, >99%) as an internal standard. A 
second run at the same scale provided 2 in 72% yield with 99.1 wt% 
purity. 

17. The checker suggested that extending high-vacuum (<1 mbar) drying 
time to 52 h enhanced the purity consistency across runs.  

 
 
Working with Hazardous Chemicals 
 

The procedures in Organic Syntheses are intended for use only by persons 
with proper training in experimental organic chemistry.  All hazardous 
materials should be handled using the standard procedures for work with 
chemicals described in references such as "Prudent Practices in the 
Laboratory" (The National Academies Press, Washington, D.C., 2011; the full 
text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no significant 
hazards are associated with the chemicals involved in that procedure.  Prior 
to performing a reaction, a thorough risk assessment should be carried out 
that includes a review of the potential hazards associated with each chemical 
and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards 
associated with chemicals can be found in Chapter 4 of Prudent Practices. 

http://www.nap.edu/catalog.php?record_id=12654
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The procedures described in Organic Syntheses are provided as published 
and are conducted at one's own risk.  Organic Syntheses, Inc., its Editors, and 
its Board of Directors do not warrant or guarantee the safety of individuals 
using these procedures and hereby disclaim any liability for any injuries or 
damages claimed to have resulted from or related in any way to the 
procedures herein. 
 
 
Discussion 
 

The accompanying procedure describes a simple and mild means to 
access carboxylic acids from methyl esters. Due to their synthetic utility2 and 
presence in pharmaceuticals,3 carboxylic acids and methods to generate them 
are valuable in organic synthesis. Although carboxylic acids are classically 
accessed through saponification of esters by hydroxide base,4 saponification 
by these means is not tolerant of certain base-labile functionalities. In the case 
of esters containing b-leaving groups (e.g., 1, Figure 7), the hydroxide anion 
can remove the acidic a-proton of the ester, thus affecting an elimination or 
retro-Michael addition to form an acrylate (e.g., 3).5 Therefore, alternative 
saponification methods under less basic conditions are required to retain the 
leaving group functionality, while converting esters to acids. Enzymatic 
hydrolysis to arrive at ester 2 provides an attractive option. 

 

  
Figure 7. Traditional vs. enzymatic ester hydrolysis 

 
Disclosed in 1993, the Basak group saponified methyl esters bearing 

various b-leaving groups utilizing Pig Liver Esterase (PLE).6 This method 
provided exclusively the desired carboxylic acid products while tolerating a 
variety of b-leaving groups. Leaving groups including halides, sulfides, 
selenides, and sulfones were tolerated with no competitive formation of the 
corresponding acrylate, demonstrating the versatility of this method (Figure 
8, 6–9). In addition to leaving group variation, the Basak group also 
demonstrated that this saponification enabled the synthesis of N-benzoyl 
amino acid derivatives bearing b-leaving groups (10–13). In these substituted 
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examples, longer reaction times were observed with moderate yields, 
however, no undesired product formation was observed.6 

 

  
Figure 8. Selected scope of saponification using PLE with respect to 
leaving group variation and the formation of N-benzoyl amino acid 

derivatives6 
 

Whereas the original procedure utilizes PLE, the accompanying 
procedure uses Amano Lipase from Pseudomonas fluorescens instead. Amano 
Lipase is a more readily available, shelf-stable enzyme that can affect the 
saponification with high selectivity for the desired product.7 This enzyme 
and similar lipases are cultivated from microorganisms that are naturally 
present in the soil of farms and forests. These processes are overall very 
environmentally efficient as these saponification reactions require little to no 
organic solvent.  

Furthermore, the saponification of esters mediated by enzymes from 
microorganisms has been employed by synthetic chemists in complex 
settings. Yoshioka and coworkers utilized Lipase from Pseudomonas 
fluorescens en route to diclofenac 1-b-O-Acyl glucuronide with full 
saponification of the acetoxy group to afford triol 15 in 90–94% yields (Figure 
9).8 In a synthesis of Oseltamivir Phosphate (Tamiflu) in 2008, the diester 
precursor to 16 underwent an enzymatic desymmetrization and 
saponification mediated by Lipase from Aspergillus oryzae in quantitative 
yields and >99.9% enantiomeric excess. 9  Lastly, Wessel and coworkers 
achieved the synthesis of 2,4-anhydro-5-N-(t-butoxycarbonyl)amino-D-
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lyxonic acid (17) in quantitative yields using Lipase L2 from Candida 
antarctica.10 In this example, several enzymes were screened, including PLE, 
and Lipase L2 exhibited the best reactivity.  All of these processes proceed 
with high yields and chemoselectivity. In addition, epimerizable 
stereocenters can be preserved, which highlights the mild nature of 
enzymatic hydrolysis. 

 

 
Figure 9. Selected examples of saponifications using lipases isolated from 

microorganisms 
 

In summary, enzyme-mediated saponification provides a practical 
means to achieve ester hydrolysis under mild conditions. Specifically, the use 
of commercially available Amano Lipase from Pseudomonas fluorescens 
enables a simple yet effective method of accomplishing this transformation. 
Applications in total synthesis have shown this methodology and similar 
enzyme-mediated approaches are versatile tools to hydrolyze esters in 
complex settings. Advances in enzymatic saponification would allow for 
rapid and chemoselective access to carboxylic acids to be leveraged in organic 
synthesis and in medicinal chemistry.  
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Appendix 

Chemical Abstracts Nomenclature (Registry Number) 
 

Methyl 3-bromopropionate; (3395-91-3) 
Amano Lipase from Pseudomonas fluorescens; (9001-62-1) 

Hydrochloric acid (12.0 M in water); (7647-01-0) 
Sodium Chloride; (7647-14-5) 
Sodium Sulfate; (7757-82-6) 
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12 Receiver Gain 69.6

13 Relaxation Delay 60.0000

14 Pulse Width 10.0000

15 Acquisition Time 2.5166

16 Acquisition Date 2025-10-30T16:07:52

17 Modification Date 2025-10-30T16:08:01

18 Spectrometer Frequency 500.13

19 Spectral Width 13020.8

20 Lowest Frequency -3434.0

21 Nucleus 1H

22 Acquired Size 32768

23 Spectral Size 131072

24 Digital Resolution 0.10


