A Publication
of Reliable Methods
for the Preparation
of Organic Compounds
Annual Volume
Org. Synth. 1925, 5, 9
DOI: 10.15227/orgsyn.005.0009
Submitted by B. A. Ellis
Checked by Roger Adams and C. D. Thompson.
1. Procedure
In a 5-l. round-bottomed flask fitted with a mechanical stirrer, a thermometer, and a 1-l. separatory funnel, is placed 2100 g. (16.6 moles) of 50 per cent nitric acid (sp. gr. 1.32) (Hood). The acid is heated nearly to boiling, and 1 g. of ammonium vanadate (Note 1) is added. The stirrer is started, and 500 g. (5 moles) of cyclohexanol (Note 2) is introduced slowly through the separatory funnel. At first 40–50 drops of cyclohexanol are admitted and the reaction mixture is stirred until the reaction has started (four to five minutes) as is indicated by the evolution of oxides of nitrogen (Note 3). Then the reaction flask is placed in an ice-water bath and cooled until the temperature of the oxidizing mixture is 55–60°. The cyclohexanol is then added as rapidly as possible while the temperature of the mixture is kept within these limits. Toward the end of the oxidation (after about 475 g. of cyclohexanol has been added) the ice bath must be removed and sometimes heat must be applied in order to maintain the temperature and avoid crystallization of adipic acid.
Stirring is continued for about one hour after the addition of the last of the cyclohexanol. Then the mixture is cooled to about 0° and the adipic acid is collected on a suction filter, washed with 500 cc. of ice water, and dried in the air overnight. The yield is 395–410 g. of white crystals which melt at 146–149°. Evaporation of the nitric acid mother liquors yields an additional 30–40 g. of product which melts at 141–144° (Note 4). The total yield of crude adipic acid is 425–440 g. (58–60 per cent of the theoretical amount) (Note 5). This product is pure enough for most purposes. However, a purer product may be obtained by recrystallizing this crude material from 700 cc. of concentrated nitric acid (sp. gr. 1.42). The loss in this purification is about 5 per cent. The recrystallized acid melts at 151–152° (Note 6) and (Note 7).
2. Notes
1. It is suggested that no catalyst is necessary if the temperature of the reaction mixture, once the reaction has started, is maintained at 85–90°. (W. W. Hartman, private communication.)
2. The cyclohexanol used was a commercial grade, which contained practically no phenol. Over 90 per cent of the product boiled between 158–163°.
3. It is important that the oxidation start before a large amount of cyclohexanol has been added or the reaction will become violent. The reaction must be carried out in a good hood.
4. The nitric acid mother liquors contain considerable amounts of adipic acid mixed with glutaric and succinic acids. It has not proved practicable to separate these acids by crystallization. However, if the nitric acid is removed by evaporation and the resulting mixture of acids is esterified with ethyl alcohol, a mixture of ethyl succinate (b.p. 121–126°/20 mm.), ethyl glutarate (b.p. 133–138°/20 mm.), and ethyl adipate (b.p. 142–147°/20 mm.) can be obtained. These esters can be separated quite satisfactorily by distillation.
5. The following modified procedure is reported to give better yields. In a 3-l. three-necked flask provided with a stirrer, reflux condenser, and dropping funnel set in asbestos-sodium silicate stoppers, are placed 1900 cc. of 50 per cent nitric acid (1262 cc. of nitric acid, sp. gr. 1.42, diluted to 1900 cc.) and 1 g. of ammonium vanadate. The flask is surrounded by a water bath heated to 50–60°, and, while the mixture is stirred, 357 g. (3.5 moles) of commercial cyclohexanol is added very slowly so that the temperature of the bath is maintained at 50–60°. This requires about six to eight hours. The reaction is completed by heating the water bath to boiling until the evolution of nitrogen oxides has ceased (about one hour). The hot reaction mixture is siphoned off and allowed to cool. The yield of crude adipic acid is 372 g. (72 per cent of the theoretical amount). (Duncan G. Foster, private communication.)
The asbestos-sodium silicate stoppers are prepared by cutting thin asbestos paper into strips about 2.5 cm. wide, moistening the strips in water-glass solution, and then winding them around the end of the condenser, for example, until a stopper of the correct size is obtained. After the apparatus is assembled the stoppers are coated with water-glass and allowed to harden overnight.
6. The nitric acid mother liquors from the crystallization may be used as part of the acid for a subsequent oxidation.
7. Adipic acid may also be recrystallized from 2.5 times its weight of water or 50 per cent alcohol. However, these solvents are less satisfactory than nitric acid.
3. Discussion
Adipic acid can be prepared by the oxidation of cyclohexanol and cyclohexanone with nitric acid1 or potassium permanganate.2 The procedure described is adapted from the patent of the Deutsche Hydrierwerke A.-G.1
Other methods of preparing adipic acid are the oxidation of cyclohexene with dichromate and sulfuric acid3 and the interaction of γ-bromobutyric ester with sodium malonic ester followed by hydrolysis and decarboxylation of the resulting triethyl 1,4,4-butanetricarboxylate.4

References and Notes
  1. Zelinsky, J. Russ. Phys. Chem. Soc. 35, 1280 (1903) [Bull. soc. chim. (3) 34, 208 (1905)]; Holleman, Van Der Laan and Slijer, Rec. trav. chim. 24, 23 (1905); Bouveault and Locquin, Bull. soc. chim. (4) 3, 438 (1908); Chavanne and Simon, Compt. rend. 168, 1326 (1919); Thorpe and Kon, Org. Syn. 5, 9; Deutsche Hydrierwerke A.-G., Ger. pat. 473,960 (1926) [C. A. 23, 2988 (1929)]; Claasen, Fr. pat. 32,991 (1927) [C. A. 23, 846 (1929)]; Edwards and Reid, J. Am. Chem. Soc. 52, 3235 (1930); E. I. du Pont de Nemours and Co., U. S. pat. 1,921,101 [C. A. 27, 5084 (1933)].
  2. Rosenlew, Ber. 39, 2202 (1906); Mannich and Hâncu, Ber. 41, 575 (1908); Blaise and Koehler, Bull. soc. chim. (4) 5, 682 (1909); v. Braun and Lemke, Ber. 55B, 3529 (1922); Wagner, J. Chem. Education 10, 114 (1933); D. A. Howes (private communication) prepared adipic acid in quite satisfactory yields by the permanganate oxidation method.
  3. Zal'kind and Markov, Russ. pat. 50,394 [C. A. 31, 8548 (1937)]; Zal'kind and Markov, C. A. 31, 3875 (1937).
  4. Boorman, Linstead, and Rydon, J. Chem. Soc. 1933, 573.

Chemical Abstracts Nomenclature (Collective Index Number);
(Registry Number)

oxides of nitrogen


succinic acids

asbestos-sodium silicate

nitrogen oxides

γ-bromobutyric ester

sodium malonic ester

ethyl alcohol,
alcohol (64-17-5)

sulfuric acid (7664-93-9)

Adipic acid (124-04-9)

nitric acid (7697-37-2)

ammonium vanadate (7803-55-6)

Cyclohexanol (108-93-0)

phenol (108-95-2)

ethyl succinate

ethyl glutarate (1070-62-8)

Ethyl adipate (626-86-8)

Cyclohexanone (108-94-1)

potassium permanganate (7722-64-7)

Cyclohexene (110-83-8)


triethyl 1,4,4-butanetricarboxylate